М. Ф. Биктимирова, В. И. Бутовецкая, О. Н. Кузнецова

ПОЛИМЕРНЫЕ ПОКРЫТИЯ ДЛЯ ЗАЩИТЫ СТЕКОЛ ОТЗАПОТЕВАНИЯ

Ключевые слова: незапотевающие покрытия, гидрофильный полимер, оптическая прозрачность покрытия

Исследованы плёнкообразующие и незапотевающие свойства композиций на основе гидрофильных полимеров. Полученные покрытия способны сохранять лиофильные свойства при циклическом изменении температуры от минус 20°С до плюс 20-25°С.

Keywords: anti-fog coatings, the hydrophilic polymer, the optical transparency of the coating.

Film-forming and anti-fog properties of compositions based on hydrophilic polymers were studied. The obtained coatings retain lyophilic properties at cyclical change of temperature from -20 $^{\circ}$ C to 20-25 $^{\circ}$ C.

Физическая сущность процесса запотевания заключается в конденсации влаги воздуха на поверхности материала. Конденсация капель влаги может происходить при перемещении материала из условий с повышенной температурой воздуха в область более низких температур и наоборот. При этом важную роль в процессе запотевания играет влажность воздуха, контактирующего с поверхностью материала.

Для уменьшения запотевания стекол в настоящее время применяют методы, которые различаются по эффективности. В частности известны такие способы как применение спреев, специальных карандашей, салфеток; модификация поверхности стекол; нанесение гидрофобных или гидрофильных покрытий. Первый вышеупомянутых способов обработки поверхности оптических материалов является самым дешевым, но И одновременно самым короткодействующим. Второй способ самый затратный и пока еще находится исследований и разработки. Последний способ защиты поверхностей оптики от запотевания занимает промежуточное положение по стоимости и срокам действия. Применение того или иного способа защиты стекла от запотевания зависит от условий эксплуатации, от времени пребывания стекла в условиях перепада температур, от диапазона изменения температуры, от требований надежности.

Как следует ИЗ немногочисленных литературных данных (в основном патентного характера) для решения проблемы использования средств и способов, предотвращающих запотевание, являются полимеры гидрофильной природы [1, 2]. гидрофильных Основу покрытий составляют полимеры, содержащие гидрофильные группы (-ОН, -COOH, - NH₂, -CN, =CO), взаимодействующие с конденсирующей влагой. Присутствие сополимерах полярных функциональных групп анионных (-СООН), катионных (-N-) способствует сольватации ими влаги воздуха. Специфичность строения и состава макромолекул определяет их способность к адсорбции влаги и оказывает существенное влияние на процесс диффузии [3]. Способность к адсорбции воды зависит не только от степени полярности функциональных групп, но и от их расположения в цепи полимера, а также от

склонности их к комплексообразованию, в частности к образованию водородных связей [4].

В данной работе в качестве защитного покрытия были исследованы тонкие полимерные пленки, сформированные из раствора методом полива. В качестве пленкообразующего были спирт исследованы поливиниловый (ПВС) и сополимеры 2-метил-5водорастворимые винилпиридина с метакриловой кислотой (2М5ВП-МАК) с молярным соотношением кислотных и основных групп 80:20. Сополимер 2М5ВП-МАК является полиамфолитом, поэтому он хорошо растворяется как в кислой, так и в щелочной среде. Для обеспечения хорошей адгезии покрытия к поверхности стекол при сохранении их оптической прозрачности экспериментально было подобрано оптимальное количество этилового спирта В Полимер композиции. предварительно был растворен R слегка подщелаченном подкисленном водном растворе с последующим добавлением этилового спирта. Увеличение доли спирта в композиции приводит к высаждению высокомолекулярных фракций полимеров, снижает величину светопропускания стекла, и на стекле появляется матовый налет. Оценка растворов прозрачности покрытий визуально. предварительном этапе проводилась соотношениями Оптимальными ПО растворителей (спирта и водного раствора соляной кислоты или едкого натра), обеспечивающими хорошую растворимость сополимеров и высокую адгезию к стеклам (силикатным или органическим), являются объемные соотношения 2:1, 1:1, 1:2. В модифицирующих качестве добавок были исследованы соединения, содержащие в своем би-, составе первичные и вторичные моно-, трифункциональные группы: аминопропилтриэтоксисиланы (А-1100 и АГМ-9, зарубежного и отечественного производства) и єкапролактам; мочевина и этиленгликоль; глицерин.

В таблице 1 приведены составы исследуемых полимерных покрытий.

Содержание полимера в композиции варьировали от 0,6 до 7 мас.%, количество модифицирующей добавки составляло 1-2 мас.% от полимера.

В слабощелочном растворе покрытия (образец №1) после сушки приобрели матовый

оттенок, поэтому в дальнейшем для приготовления покрытий были использованы только подкисленные

растворы.

Таблица 1 - Составы композиций для приготовления покрытий для стекол

№ обр.	Полимер	Соотношение	Характеристика среды	Модификатор	
		спирт: водная фаза			
1	2М5ВП-МАК	2:1	слабощелочная	нет	
2	2М5ВП-МАК	2:1	слабокислая	нет	
3	2М5ВП-МАК	1:1	слабокислая	мочевина	
4	2М5ВП-МАК	2:1	слабокислая	мочевина	
5	2М5ВП-МАК	2:1	слабокислая	АГМ-9	
6	2М5ВП-МАК	2:1	слабокислая	A-1100	
7	2М5ВП-МАК	2:1	слабокислая	ε-капролактам	
8	2М5ВП-МАК	2:1	слабокислая	этиленгликоль	
9	ПВС	1:1	нейтральная	нет	
10	ПВС	1:1	слабокислая	нет	
11	ПВС	2:1	нейтральная	нет	
12	ПВС	1:2	слабокислая	нет	

Покрытия на основе поливинилового спирта либо также после сушки приобретали матовый оттенок (образец №9), либо обладали недостаточной адгезией к стеклу (образцы №10-12).

Незапотевающие свойства покрытий были исследованы при циклической смене положительных и отрицательных температур (табл. 2).

Таблица 2 – Оценка незапотевания покрытий на органических стеклах

No	Время выдержки при минус20 °C, мин									
обр.	10	перерыв	15	перерыв	10	перерыв	15	перерыв	10	
2	-	15 мин	-	15 мин	-	15 мин	-	20 мин	-	
3	-		-		-		-		-	
4	+		+		+		+		+	
5	+		+		+		+		+	
6	+		+		+		+		+	
7	+		+		+		+		+	
8	+		+		+		+		+	

(+- не запотевает, - - запотевает)

Для лучших образцов были определены коэффициенты светопропускания при λ =400 нм, что входит в область видимого света, которые для данных образцов близки к 100%, что свидетельствует о высокой прозрачности покрытий.

Сформированная на поверхности стекла пленка при смене температур не запотевает вследствие того, что полимер является водорастворимым и сорбирует мельчайшие капельки конденсата, растворяя воду и сохраняя позрачность покрытия. Разработанные покрытия могут быть рекомендованы для придания незапотевающих свойств оптическим материалам, эксплуатируемым

при отрицательных температурах до минус двадцати градусов Цельсия.

Литература

- 1. Пат. 3700487. 1975. (США)
- 2. Незапотевающие покрытия / М.Ф.Биктимирова, В.И.Бутовецкая, О.Н.Кузнецова// Вестник Казанского технологического университета. 2008. №5. с. 100-106.
- 3. Кандиита X. Гидрофильные полимеры.// Кобунси Како. 1975. №2. С.24-30.
- 4. Николаев, А.Ф. Водорастворимые полимеры/ Николаев А.Ф., Охрименко Г.И. Л: Химия, 1979. 145 с.

[©] **М. Ф. Биктимирова** – магистр КНИТУ; **В. И. Бутовецкая** – канд. хим. наук, доц. каф. технологии пластических масс КНИТУ, butovetskaya@mail.ru; **О. Н. Кузнецова** – канд. хим. наук, доц. той же кафедры, kuznetsovaon@yandex.ru.