А. А. Бусыгина, Т. Н. Гришаева, А. Н. Маслий, Ан. М. Кузнецов, Г. В. Коршин

КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ МЕХАНИЗМА ОКИСЛЕНИЯ АРСЕНИТА ГИДРОКСИЛ-РАДИКАЛАМИ

Ключевые слова: теория функционала плотности, РСМ, арсенит, механизм окисления.

В рамках теории функционала плотности исследован механизм окисления арсенита гидроксил-радикалами, рассчитаны термодинамические и структурные характеристики исходных частиц, переходных состояний, а также пред- и постреакционных комплексов, которые формируются в водных растворах. Оценена энергия активации процесса окисления и установлен его механизм.

Key words: density functional theory, PCM, arsenite, oxidation mechanism.

The mechanism of oxidation of arsenite by hydroxyl radical was examined via quantum-chemical simulations that employed the density functional theory. Structural and thermodynamic characteristics of reactants, transition states, pre- and post-reaction complexes formed in this process were determined as well. The activation energy of the oxidation process was estimated and its mechanism was proposed.

Введение

В настоящее время установлено, что мышьяк как токсикант окружающей среды содержится во многих водоемах по всему миру, особенно в ряде азиатских стран [1-5].

Среди форм, содержащих мышьяк, обычно присутствующих в грунтовых водах, мышьяковистая кислота H₃AsO₃ (арсенит) обладает более высокой токсичностью, чем мышьяковая кислота H₃AsO₄ (арсенат) [6,7]. Наряду с высокой токсичностью арсенита проблема состоит также в том, что поскольку он представляет собой очень слабую кислоту (константы кислотности pK_1 , pK_2 и pK_3 H₃AsO₃ равны 9.2, 12.1 и 12.7 соответственно [8]), арсенит существует в форме H₃AsO₃ при рH, близком к нейтральному. Вследствие отсутствия заряда H₃AsO₃ значительно более мобильный, чем арсенат, существующий в грунтовых водах главным образом как $HAsO_4^{2-}$ (р K_1 , р K_2 и р K_3 H_3AsO_4 равны 2.2, 6.8 11.5 соответственно). противоположность арсениту, арсенат способен адсорбироваться иммобилизироваться И некоторыми минералами. Технология коагуляции и сорбции, применяемая при очистке питьевой воды, позволяет полностью удалять арсенат из воды, но оказывается менее эффективной в применении к арсениту [9-13].

Установлено, что окисление арсенита с радикалов, OH продуцируемых электрохимически с использованием анодов PbO₂, или прямом электрохимическом окислении на металлических электродах ускоряется в присутствии карбонатили гидрокарбонат-ионов [14-17]. Предполагается, что этот эффект связан с карбонат-арсенитного образованием комплекса состава [As(OH)₂CO₃]⁻. Эксперименты EXAFS показали, что длина связей As-O в этом комплексе по сравнению с таковыми в H₃AsO₃ не претерпевает существенных изменений, что указывает относительную слабость взаимодействия арсениткарбонат. Этот результат согласуется наблюдениями, основанными данных по

растворимости слабых карбонат-арсенитных комплексов [18]. [As(OH) $_2$ CO $_3$] или подобные комплексы более быстро окисляются гидроксильными радикалами по сравнению С H_3 AsO $_3$ [17], а электрохимическое окисление как [As(OH) $_2$ CO $_3$], так и H_3 AsO $_3$ протекает через образование нестабильного интермедиата As(IV), что также наблюдалось в экспериментах по радиолизу [17,19,20].

Несмотря на потенциальную важность интермедиатов мышьяка (IV) и присутствие карбонатных эффектов окисления арсенита с помощью ОН микроскопические аспекты этих процессов адекватно не установлены. Эти аспекты могут быть раскрыты с помощью квантовохимических расчетов, которые позволяют выяснить структурные и термодинамические параметры, соответствующих участников реакций. Ряд работ с применением квантово-химических подходов был выполнен по исследованию структурных и спектроскопических свойств арсенита и арсената, а также их реакций сульфидирования, метилирования и сорбции [21-31]. Например, в работе [23] была исследована структура внутренней сферы гидратированных форм As(III) И проведено сравнение квантово-химических структурных параметров с данными, полученными методом EXAFS. В работе [26] были выполнены расчеты методом функционала плотности структуры ряда поверхностных комплексов арсенита и арсената в сравнении с данными, полученными методом EXAFS. В работе [30] моделировалась адсорбция As(III) на оксидах марганца. Тоссель [25] провел квантово-химическое исследование стабильности комплексов арсенита с карбонат- и гидрокарбонатстабильность адсорбции ионами и выяснил гидрокарбоната на кластерах, моделирующих поверхность гидроксида алюминия. Эти расчеты были выполнены на уровне теории НГ, МР2 и CCSD(T) с учетом эффектов растворителя в рамках самосогласованного реакционного поля (версия COSMO). Расчеты, представленные в [25], также дают важные оценки структур и энергий некоторых арсенит/карбонатных комплексов и соответствующие ЯМР сдвиги, ИК/КР и абсорбционные спектры.

В полную постановку нашей задачи входит квантово-химическое исследование детальное каталитического влияния карбонатгидрокарбонат-ионов на процессы окисления арсенита гидроксильными радикалами в водных растворах. В работе [39] проведен первый этап этого исследования. В ней на квантово-химическом уровне рассчитаны структурные и термодинамические характеристики различных форм комплексов, которые могут формироваться при взаимодействии H_3AsO_3 и ионами CO_3^{2-} и HCO_3^{-} .

В нашей данной работе приведены результаты квантово-химического исследования первой стадии непосредственного окисления арсенита гидроксил-радикалом, на основе чего оценена энергия активации и установлен наиболее вероятный механизм этого процесса.

1. Методика исследования

Квантово-химические расчеты были выполнены с помощью программного пакета Gaussian 09 [32] в рамках теории функционала плотности с использованием одного из наиболее функционалов популярных гибридных B3LYP [33,34] гибридных функционалов второго поколения. включающих дальнодействующие поправки, а именно, ω-В97Х [35] и ω-В97ХD [36]. Функционал ω-В97XD отличается от ω-В97X тем, что в нем учтены поправки на дисперсионное взаимодействие. В качестве атомных базисных наборов были выбраны стандартный валентнорасщепленный базис 6-311++G(d,p) (TZ-уровень) с поляризационными орбиталями и диффузными гауссовыми функциями на всех атомах, а также электронно-коррелированный базисный Даннинга (DZ-уровень) aug-cc-pVDZ, включающий диффузные примитивные гауссианы [37]. Полная оптимизация молекулярной геометрии проводилась без каких-либо ограничений по симметрии. Влияние растворителя (водный полярного раствор) учитывалось в рамках модели поляризованного континуума РСМ [38], в которой содержащая растворенную частицу, строится из совокупности пересекающихся атомных определенного радиуса. В качестве радиусов использовался набор, определенный по методике UFF (Universal Force Field [38]).

Первоначально проводилась полная оптимизация геометрии систем и поиск переходных состояний в газовой фазе. Далее с использованием геометрий проводилась полученных геометрии и поиск переходных оптимизация состояний с учетом влияния растворителя. Для подтверждения достижения истинного минимума или переходного состояния, а также для оценки термодинамических параметров производился расчет частот нормальных колебаний. Эти расчеты также использовались для оценки термальных поправок, необходимых для расчета полной энтальпии, энтропии и свободной энергии Гиббса частиц (при температуре 298.15 К и давлении 1 атм).

Поиск переходных состояний производился по стандартной процедуре, которая подразумевает наличие в колебательном спектре одного колебания с мнимой частотой, имеющей относительно большое абсолютное значение. Все найденные переходные состояния проверялись на соответствие исследуемым реакциям с помощью процедуры поиска пути реакции IRC. Эта процедура позволяла также найти пред- и постреакционные комплексы в реакциях.

2. Результаты и обсуждение

Как отмечалось во введении, окисление H_3AsO_3 гидроксильными радикалами протекает через образование нестабильного интермедиата As(IV), процесс которого можно представить уравнением

$$H_3AsO_3 + OH^* = H_2AsO_3^* + H_2O$$
 (1)

Нами были исследованы отдельные стадии этого процесса с использованием двух подходов: континуальной модели растворителя комбинированной молекулярно-континуальной модели. В первой модели проводится квантовохимический расчет всех частиц, участвующих в реакции, с учетом влияния среды (водный раствор) как диэлектрического континуума. В рамках молекулярно-континуальной модели в расчетную схему включается несколько молекул растворителя, составляющих ближайшее окружение растворенной частицы, взаимодействие c дальнейшим окружением учитывается континуальном приближении.

Согласно первой модели расчеты показывают, что сближение гидроксильного радикала с молекулой H₃AsO₃ приводит к безбарьерному образованию радикала H₄AsO₄, который можно рассматривать как предреакционный комплекс (PRE). Далее было сделано допущение о внутримолекулярном переносе атома Н от одной из гидроксогрупп к другой через некоторое переходное состояние (TS) с образованием постреакционного комплекса (POST). Была оптимизирована структура переходного состояния, после чего был выполне спуск по координате реакции в прямом и обратном направлениях. Спуск в обратном направлении привел к структуре предреакционного комплекса H_4AsO_4 (PRE), а спуск в прямом направлении позволил определить структуру постреакционного комплекса в виде $H_2AsO_3...H_2O_{(POST)}$, где одна молекула воды связана водородной связью с молекулярным радикалом $H_2AsO_3^*$. Формально в этой частице атому мышьяка можно приписать степень окисления (IV), что свидетельствует об окислительном характере взаимодействия гидроксильного радикала с молекулой H₃AsO₃.

Таблица 1 — Энтальпии, энтропии и свободные энергии Гиббса переходов в соответствии со схемой (I)

	Переходы					
	l→ll	II→III	III→IV	lV→V		
B3LYP/6-311++G(d,p) B3LYP/aug-cc-pVDZ						
ΔН ⁰ ₂₉₈	-19,81	21,75	-15,04	0,16		
ккал/моль	-21,16	21,84	-13,11	-0,16		
ΔS ⁰ ₂₉₈	-34,51	-1,09	14,02	22,05		
кал/моль⋅К	-32,71	-0,16	16,39	19,58		
ΔG ⁰ ₂₉₈	-9,52	22,07	-19,22	-6,41		
ккал/моль	-11,40	21,88	-18,00	-6,00		
ω-B97X/6-311++G(d,p) ω-B97X/aug-cc-pVDZ						
ΔН ⁰ ₂₉₈	-21,07	24,60	-16,16	2,23		
ккал/моль	-23,08	24,35	-13,66	1,92		
ΔS ⁰ ₂₉₈	-34,90	-1,65	13,33	24,06		
кал/моль⋅К	-35,32	-1,75	14,45	23,79		
ΔG ⁰ ₂₉₈	-10,67	25,09	-20,13	-4,95		
ккал/моль	-12,55	24,87	-17,97	-5,17		
ω-B97XD/6-311++G(d,p) ω-B97XD/aug-cc-pVDZ						
ΔН ⁰ ₂₉₈	-20,67	26,88	-19,15	1,34		
ккал/моль	-22,53	23,39	-13,78	0,90		
ΔS ⁰ ₂₉₈	-34,93	-1,79	13,00	24,53		
кал/моль⋅К	-34,95	-1,48	14,73	22,55		
ΔG ⁰ ₂₉₈	-10,26	27,22	-23,02	-5,98		
ккал/моль	-12,11	23,83	-18,17	-5,83		

Таким образом, реакцию (1) можно представить совокупностью нескольких стадий, показанных на схеме (I).

В таблице 1 для каждой из показанных на схеме (I) стадий приведены термодинамические характеристики, рассчитанные методом функционала плотности с тремя различными функционалами и с двумя атомными базисами. Качественно все шесть комбинаций функционал/базис показывают одинаковые результаты, наблюдаются небольшие **ХОТЯ** количественные различия. На рисунке 1 показаны оптимизированные структуры всех представленных в схеме (I), а на рисунке 2 (точечная линия) приведена энергетическая диаграмма для изменения свободной энергии Гиббса (за нуль принята полная энергия исходных реагентов). Изменение свободной энергии при переходе II→III из предреакционного комплекса в переходное состояние можно отождествить со свободной энергией активации ΔG^0_{act} , которая для расчетного уровня ω-B97XD/aug-cc-pVDZ равна 23,83 ккал/моль (табл.1).

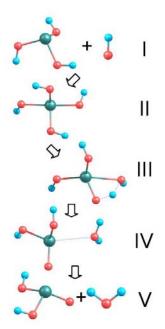


Рис. 1 — Структуры исходного состояния (I), предреакционного комплекса (II), переходного состояния (III), постреакционного комплекса (IV) и продуктов (V) в соответствии со схемой (I)

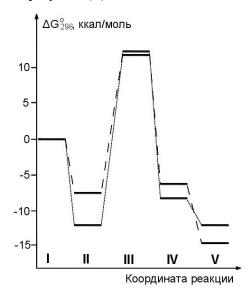


Рис. 2 — Энергетический профиль пути реакции окисления H3AsO3 гидроксильным радикалом, протекающей по схеме (I) (точки) и схеме (II) (пунктир)

Очевидно, что использование молекулярноконтинуальной модели взаимодействия частиц (реагентов и продуктов реакции) в растворе должно дать более точные значения термодинамических характеристик реакций по сравнению с континуальной моделью. Поэтому мы использовали молекулярно-континуальную модель, в которой исходная и конечная частицы (H_3AsO_3 и H_2AsO_3) сольватированы тремя молекулами H_2O . Тогда уравнение (1) можно записать в следующем виде:

$$H_3AsO_3\cdot 3H_2O + OH^* = H_2AsO_3^*\cdot 3H_2O + H_2O$$
 (2)

Ближайшее гидратное окружение радикала H_4AsO_4 в схеме (I) можно смоделировать четырьмя молекулами H_2O . В соответствии с этим для сохранения баланса молекул H_2O на всех стадиях процесса к исходным реагентам и продуктам следует добавить дополнительно по одной молекуле H_2O , и процесс будет описываться схемой (II).

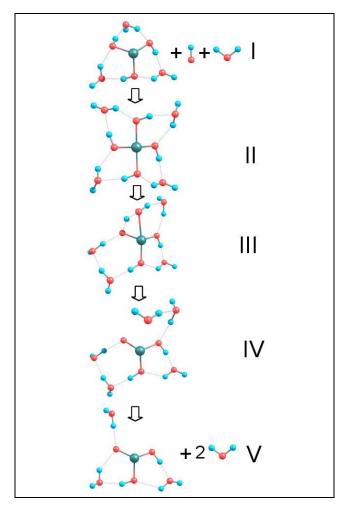


Рис. 3 — Структура исходного состояния (I), предреакционного комплекса (II), переходного состояния (III), постреакционного комплекса (IV) и продуктов (V) в соответствии со схемой (II)

На рисунке 3 показаны оптимизированные структуры всех частиц, представленных в схеме (II), а на рисунке 2 (пунктирная линия) приведена энергетическая диаграмма для изменения свободной энергии Гиббса. Термодинамические характеристики даны в таблице 2. Из расчетов следует, что изменение свободной энергии Гиббса при переходе II \rightarrow III из предреакционного комплекса в переходное состояние (свободная энергия активации ΔG^0_{act}) для расчетного уровня ω -B97XD/aug-cc-pVDZ составляет 19,32 ккал/моль (табл.2), что почти на 5

ккал/моль меньше значения, полученного в рамках континуальной модели (23,83 ккал/моль).

Таким образом, расчеты показывают, что включение в расчетную схему нескольких молекул растворителя приводит к заметным изменениям рассчитанных параметров, в частности, энергии активации. В случае нашей системы дополнительное включение большего количества молекул воды вряд ли приведет к заметному изменению рассчитываемой энергии активации, поскольку дополнительные молекулы воды будут образовывать водородные связи с уже включенными молекулами и не окажут влияния на перенос атома водорода в переходном состоянии реакции.

Таблица 2 — Энтальпии, энтропии и свободные энергии Гиббса переходов в соответствии со схемами (I) и (II), рассчитанные на уровне ф-В97XD/aug-cc-pVDZ

	0 1					
	Переходы					
	l→ll	II→III	III→IV	IV→V		
Схема (І)						
ΔН ⁰ ₂₉₈ ккал/мол ь	-22,53	23,39	-13,78	0,90		
ΔS ⁰ ₂₉₈ кал/моль ∙К	-34,95	-1,48	14,73	22,55		
ΔG ⁰ ₂₉₈ ккал/мол ь	-12,11	23,83	-18,17	-5,83		
Схема (II) [*]						
ΔН ⁰ ₂₉₈ ккал/мол ь	-27,54 (-27,54)	18,88 (11,02)	-14,70 (-6.84)	12,05 (12,05)		
ΔS ⁰ ₂₉₈ кал/моль ∙К	-66,37 (-66,37)	-1,48 (-8,48)	11,52 (18,51)	68,18 (68,18)		
ΔG ⁰ ₂₉₈ ккал/мол ь	-7,75 (-7,75)	19,32 (13,55)	-18,13 (-12,36)	-8,28 (-8,28)		

^{*)} В скобках приведены значения, полученные для механизма с синхронным участием в переносе двух атомов водорода с переходным состоянием, показанным на рис.4

Следует отметить, что в обеих использованных выше моделях переходное состояние имеет одинаковый характер: осуществляется внутримолекулярный перенос атома водорода от одной гидроксогруппы к другой, результатом которого является образование и отщепление молекулы H₂O. Довольно высокое значение рассчитанной энергии активации позволяет предполагать, что может существовать некий иной механизм переноса, имеющий более низкую энергию активации. В связи с этим мы попытались смоделировать такой механизм, при котором перенос атома Н осуществляется не непосредственно от одной гидроксогруппы к другой, а посредством молекулы H₂O ближайшего гидратного окружения частицы $H_4AsO_4^*$, т.е. в предреакционном комплексе $H_4AsO_4^* \cdot 4H_2O_{(PRF)}$. Иными словами, при таком механизме атом водорода одной гидроксогруппы передается атому кислорода молекулы воды, а при этом синхронно молекула воды передает принадлежащий ей атом Н соседней гидроксогруппе. Такое оптимизированное нами альтернативное переходное состояние показано на рисунке 4.

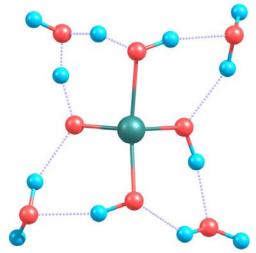


Рис. 4 — Структура переходного состояния (TS) с синхронным участием в переносе двух атомов водорода, альтернативного переходному состоянию, представленному на рис. 2

таблице 2 сведены результаты, полученные для схем (I) и (II), а также для альтернативного механизма, также протекающего по схеме (II), но с другим переходным состоянием (рис.4). Из этой таблицы следует, что энергия активации такого синхронного двухатомного переноса водорода характеризуется существенно более низкой энергией активации (13,55 ккал/моль) по сравнению с моноатомным переносом (19,32 ккал/моль). По-видимому, это полученное значение в рамках использованной молекулярно-континуальной следует считать окончательным расчетного уровня ω-B97XD/aug-cc-pVDZ.

Заключение

Таким образом, согласно проведенным расчетам можно сделать вывод о наиболее вероятном механизме протекания первой стадии процесса окисления арсенита гидроксильными радикалами с образованием интермедиата в виде радикала H_2AsO_3 . Этот механизм представляется следующим: сначала арсенит взаимодействует с гидроксил-радикалом с образованием радикала H₄AsO₄, а далее протекает внутримолекулярный перенос Н от одной гидроксильной группы радикала к другой с последующим выделением молекулы воды. В процессе переноса Н принимает участие молекула воды гидратного окружения радикала H₄AsO₄, что принципиально влияет на энергию активации элементарного акта. Показано, что использование комбинированной молекулярно-континуальной модели учета влияния диэлектрической среды приводит к более адекватным результатам по сравнению с континуальной моделью. Полученное расчетное значение энергии активации будет использовано в нашем последующем сообщении для сравнения с таковой в каталитической системе H_3AsO_3 — CO_3^2 / HCO_3^- — H_2O .

Исследование выполнено при поддержке Министерства образования и науки Российской Федерации, соглашение 14.В37.21.1939.

Литература

- 1. Smedley, P. L A review of the source, behavior and distribution of arsenic in natural waters. / Smedley, P. L.; Kinniburgh, D. G. // Appl. Geochem. 2002, -Vol. 17. –P. 517-568.
- Rahman, A Arsenic Exposure and Risk of Spontaneous Abortion, Stillbirth, and Infant Mortality./ Rahman, A.; Persson, L.A.; Nermell, B.; El Arifeen, S.; Ekstrom, E.C.; Smith, A.H.; Vahter, M. // Epidemiology. -2010, -Vol. 21. - P. 797-804
- 3. *Berg M.* Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. / Berg M.; Tran, H. C.; Nguyen, T. C.; Pham H. V.; Schertenleib, R.; Giger, W. // Environ. Sci. Technol. 2001, 35 (13), 2621-2626.
- 4. *Mao, G.Y.* Prevalence of disability in an arsenic exposure area in Inner Mongolia, China. / Mao, G.Y.; Guo, X.J.; Kang, R.Y.; Ren, C.S.; Yang, Z.P.; Sun, Y.S.; Zhang, C.W.; Zhang, X.J.; Zhang, H.T.; Yang, W. // Chemosphere. -2010, -Vol. 80. –P. 978-981.
- 5. *Kumar*, *M*. Arsenic enrichment in groundwater in the middle Gangetic Plain of Ghazipur District in Uttar Pradesh, India. / Kumar, M.; Kumar, P.; Ramanathan, A.L.; Bhattacharya, P.; Thunvik, R.; Singh, U.K.; Tsujimura, M.; Sracek, O. // J. Geochemical Exploration. -2010. –Vol. 105. –P. 83-94.
- Le, X. C. Determination of monomethyl arsonous acid, a key arsenic methylation intermediate, in human urine. / Le, X. C.; Ma, M.; Lu, X.; Cullen, W. R.; Aposhian, V.; Zheng, B. // Environ. Health Perspect. -2000. –Vol. 108. –P. 1015-1018.
- 7. *Le*, *X. C.* Speciation of key arsenic metabolic intermediates in human urine. / Le, X. C.; Lu, X.; Ma, M.; Cullen, W. R.; Aposhian, H. V.; Zheng, B. // Anal. Chem. -2000. –Vol. 72. –P. 5172-5177.
- 8. Benjamin, M.M. Water Chemistry // McGraw Hill. -2002.
- Bissen, M. Arsenic-A Review. Part II. Oxidation of arsenic and its removal in water treatment. / Bissen, M.; Frimmel, F. H.// Acta Hydrochim.Hydrobiol. -2003. -Vol. 31. -P. 97-107.
- 10. *Deschamps, E.* Removal of As(III) and As(V) from water using a natural Fe and Mn enriched sample. / Deschamps, E.; Ciminelli, V.S.T.; Holl, W.H. // Water Res. -2005. –Vol. 39. –P. 5212-5220.
- 11. Zhang, G.S. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. / , G.S.; Qu, J.H.; Liu, H.J.; Liu, R.P.; Wu, R.C. // Water Res. 2007. –Vol. 41. –P. 1921-1928.
- 12. Chen, W.F. Arsenic removal by iron-modified activated carbon. / Chen, W.F.; Parette, R.; Zou, J.Y.; Cannon, F.S.; Dempsey, B.A. // Water Res. -2007. -Vol. 41. -P. 1851-1858.
- 13. Zhang, G.S. Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: Oxidation and sorption. / , G.S.; Qu, J.H.; Liu, H.J.; Liu, R.P.; Li, G.T. // Env. Sci. Technol. **2007**, 41 (13), 4613-4619.
- 14. *Korshin, G. V.* Development of an Electrochemical System for Arsenite Oxidation in Drinking Water; / Korshin, G. V.; Kim, J.; Velichenko, A. B. // Awwa Research Foundation: Denver, CO. -2004.
- Zhou, W. Mesoporous TiO₂/alpha-Fe₂O₃: Bifunctional Composites for Effective Elimination of Arsenite Contamination through Simultaneous Photocatalytic Oxidation and Adsorption. / Zhou, W.; Fu, H.G.; Pan, K.; Tian, C.G.; Qu,

- Y.; Lu, P.P.; Sun, C.C. // J. Phys. Chem. A. -2008. -Vol. 112. -P. 19584-19589.
- Moore, K.W. Arsenic removal using oxidative media and nanofiltration. / Moore, K.W.; Huck, P.M.; Siverns, S. // J. American Water Works Assoc. -2008. –Vol. 100. –P. 74-83.
- 17. Korshin, G.V. Electrochemical and XAFS study of effects of carbonate in oxidation of arsenite. / Korshin, G.V., Kim, J.; Velichenko, A.B.; Frenkel, A.I.// Env. Sci. Technol. 2006. –Vol. 40. –P. 228-234.
- Neuberger, C.S. Arsenic(III) carbonate complexing. / Neuberger, C.S.; Helz, G.R // Applied Geochemistry. -2005. Vol. 20. –P. 1218–1225.
- 19. Klaning, U.K. Arsenic (IV) a pulse radiolysis study. / Klaning, U.K.; Bielski, B.H.J.; Sehested, K.// Inorg. Chem. 1989. –Vol. 28. –P. 2717-2724.
- Mustafa, I.A. Some specific features of the electrochemical behavior of arsenite ions at a rotating platinum electrode studied by cyclic voltammetry. / Mustafa, I.A.; Igumnov, M.S.; Rysev, A.P. // J. Anal. Chem. -1997. –Vol. 52. –P. 987-991.
- Tossell, J.A. Theoretical studies on arsenic oxide and hydroxide species in minerals and in aqueous solution. / Tossell, J.A.// Geochim. Cosmochim. Acta. -1997. –Vol. 61. –P. 1613-1623.
- 22. *Tossell, J.A.* Calculation of the visible-UV absorption spectra of hydrogen sulfide, bisulfide, polysulfides, and As and Sb sulfides, in aqueous solution. / Tossell, J.A. // Geochem. Transactions. -2003. –Vol. 4. –P. 28-33.
- 23. Ramirez-Solis, A. Experimental and theoretical characterization of arsenite in water: Insights into the coordination environment of As-O. / Ramirez-Solis, A.; Mukopadhyay, R.; Rosen, B.P.; Stemmler, T.L. // Inorg. Chem. -2004. –Vol. 43. –P. 2954-2959.
- 24. Dombrowski, P.M. Thermodynamic analysis of arsenic methylation. / Dombrowski, P.M.; Long W., Farley, K.J.; Mahony, J.D.; Capitani J.F.; Di Toro, D.M.// Env. Sci. Technol. -2005. –Vol. 39. –P. 2169-2176
- 25. Tossel, J.A. Calculations of interactions of bicarbonate with arsenites in aqueous solution and with the surfaces of Al hydroxide minerals./ Tossel, J.A.// In: Advances in Arsenic Research. American Chemical Society of Symposium Series. -2005. ACS, Washington, DC. Chapter 9. -P.118-128.
- 26. *Kubicki, J.D.* Surface complex structures modelled with quantum chemical calculations: carbonate, phosphate, sulphate, arsenate and arsenite. / Kubicki, J.D.; Kwon, K.D.; Paul, K.W.; Sparks, D.L.// European J. Soil Science. -2007. Vol. 58. –P. 932-944.
- 27. *Helz, G. R.* Thermodynamic model for arsenic speciation in sulfidic waters: A novel use of ab initio computations. / Helz, G. R., Tossell, J. A. // Geochim. Cosmochim. Acta. -2008. Vol. 72. –P. 4457-4468.
- Tossell, J. A. Calculation of the structures, stabilities, and vibrational spectra of arsenites, thioarsenites and thioarsenates in aqueous solution. / Tossell, J. A., Zimmermann, M. D. // Geochim. Cosmochim. Acta. -2008. –Vol. 72. –P. 5232-5242
- 29. Zimmermann, M.D. Acidities of Arsenic (III) and Arsenic (V) Thio- and Oxyacids in Aqueous Solution using the CBS-

- QB3/CPCM Method. / Zimmermann, M.D.; Tossell, J.A. // J. Phys. Chem. -2009. –Vol. 113. –P. 5105-5111.
- 30. *Zhu, M.Q.* Quantum Chemical Study of Arsenic (III, V) Adsorption on Mn-Oxides: Implications for Arsenic (III) Oxidation. / Zhu, M.Q.; Paul, K.W.; Kubicki, J.D.; Sparks, D.L.// Env. Sci. Technol. -2009. –Vol. 43. –P. 6655-6661.
- 31. *Hernandez-Cobos*, *J.* Aqueous solvation of As(OH)₃: A Monte Carlo study with flexible polarizable classical interaction potentials. / Hernandez-Cobos, J; Vargas, MC; Ramirez-Solis, A; Ortega-Blake, I. // J. Chem. Phys. -2010. –Vol. 133. –P. 114501.
- 32. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, and J.A. Pople, Gaussian 98, Revision A.11.2, Gaussian, Inc., Pittsburgh PA, 2001
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. / Becke, A.D. // J. Chem. Phys. -1993. –Vol. 98. –P. 5648–5652
- 34. *Lee, C.* Development of the Colle–Salvetti correlationenergy formula into a functional of the electron density / Lee, C.; Yang, W.; Parr, R.G.// Phys. Rev. B. -1988. –Vol. 37. –P. 785-789.
- 35. *J.-D. Chai* Systematic optimization of long-range corrected hybrid density functionals. / J.-D. Chai and M. Head-Gordon // J. Chem. Phys. -2008. -Vol. 128. -P. 84-106
- 36. *J.-D. Chai* Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. / J.-D. Chai and M. Head-Gordon // Phys. Chem. Chem. Phys. -2008. Vol. 10. -P. 6615-6620.
- 37. *T. H. Dunning Jr.* Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. / T. H. Dunning Jr. // J. Chem. Phys. -1989. -Vol. 90. -P. 1007-1023.
- 38. *Barone, V.* Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model / Barone, V.; Cossi, M. // J. Phys. Chem. A. -1998. –Vol. 102. –P. 1995-2001.
- 39. А.Н. Маслий Квантово-химическое исследование комплексообразования в системе H_3AsO_3 — CO_3^{2-}/HCO_3^- — H_2O / А.Н. Маслий, Ан.М. Кузнецов, Г.В.Коршин // Вестник Казанск. Технол. Унив. -2012. -T.15, -N.15, -C.7-11

[©] **А. А. Бусыгина** – студ. КНИТУ; **Т. Н. Гришаева** – асп. каф. неорганической химии КНИТУ: **А. Н. Маслий** – канд. хим. наук, доц. каф. неорганической химии КНИТУ, masliy@kstu.ru; **Ан. М. Кузнецов** – д-р хим. наук, проф., зав. каф. неорганической химии КНИТУ, am_kuznetsov@kstu.ru; **Г. В. Коршин** – проф., Department of Civil and Environmental Engineering, Box 352700, University of Washington, Seattle, WA 98195-2700, United States, korshin@uw.edu.