Д. А. Куряшов, А. В. Лужецкий, С. В. Захаров, Р. Р. Кашапов, Е. И. Яцкевич, Б. Р. Вагапов

САМООРГАНИЗАЦИЯ В СМЕШАННЫХ МИЦЕЛЛЯРНЫХ РАСТВОРАХ ЦВИТТЕР-ИОННОГО И АНИОННОГО ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ

Ключевые слова: поверхностно-активные вещества, самоорганизация, синергизм, вязкость, мицеллы.

В работе исследованы процессы самоорганизации в смешанных водных растворах цвиттер-ионного ПАВ — олеиламидопропилбетаина (ОАПБ) и анионного ПАВ — додецилбензолсульфонатат натрия (ДБСН). Установлено, что в смешанных растворах наблюдаются синергические эффекты снижения поверхностного натяжения, обусловленные электростатическим притяжением между молекулами цвиттер-ионного и анионного ПАВ. Методом динамического рассеяния света обнаружено, что при некоторых концентрациях в объеме смешанных растворов ОАПБ и ДБСН сосуществуют агрегаты нескольких размеров и присутствует сетка зацеплений мицеллярных цепей. Также, установлена корреляция между структурными превращениями в мицеллярном растворе и изменениями вязкости.

Keywords: surfactants, self-organization, synergy, viscosity, the micelles.

Self-organization processes in mixed water solutions of zwitterionic surfactant – oleylamidopropyl betaine (OAPB) and anionic surfactant – sodium dodecylbenzolsulphonate (SDBS) were investigated in this work. It was established that in mixed solutions synergistic effects of reduced tension were observed. This is due electrostatic attraction between zwitterionic and anionic surfactants. By dynamic light scattering method it was found that at certain concentrations in the volume of mixed solutions of OAPB and SDBS the aggregates of several sizes coexist and network of micellar chain entanglements is present. Also, a correlation between structure transformations in micellar solution and viscosity changes was also established.

Введение

Применение бинарных смесей поверхностно-активных веществ (ПАВ) позволяет более эффективно регулировать свойства мицеллярных систем по сравнению индивидуальными компонентами. Смешение амфифильных веществ разных молекулярных структур позволяет легко варьировать область существования мицеллярных растворов, форму и размер агрегатов, макроскопическое поведение системы (фазовые границы, электропроводность и др.) получая, таким образом, желательные характеристики, не прибегая к синтезу новых веществ. Этим широко пользуются на практике. Важная задача - определить, каким образом природа смешиваемых ПАВ, присутствие тех или иных добавок, общая и относительная концентрации ПАВ, рН среды, температура и другие факторы влияют на агрегативное и фазовое поведение системы.

Особенности смешанных систем связаны с появлением синергетических эффектов, которые проявляются в значительном уменьшении ККМ смеси по сравнению с растворами индивидуальных ПАВ, увеличении вязкости растворов, росте мицелл, а также в увеличении поверхностной активности.

Разнообразные литературные данные свидетельствуют о сильных синергетических эффектах, возникающих в смешанных растворах алкилбетаинов и анионных ПАВ. Эффекты проявляются, например, в сложном характере зависимостей поверхностного натяжения и ККМ от состава смеси. Так, в работе Ивасаки [1] показано, что значения ККМ и предельного поверхностного натяжения смешанных растворов додецилбетаина и додецилсульфоната натрия меньше, чем у растворов

индивидуальных ПАВ. При этом наибольшие синергические эффекты наблюдаются в смеси ПАВ при относительной мольной доле алкилбетаина ~ 0.6. Также было найдено, что данному соотношению соответствуют максимальные размеров и чисел агрегации мицелл. Аналогичное поведение выявлено в других близких по природе системах [2,3].В работах Розена синергетические эффекты объясняются наличием сильных электростатических взаимодействий между положительно заряженной группой в молекуле алкилбетаина И отрицательно заряженной молекулой анионного ПАВ.

В настоящее время достаточно полно исследованы поверхностно-активные свойства смешанных растворов алкилбетаинов и анионных практически Однако, не изучены реологические свойства растворов, несмотря на то, что акилбетаины даже с коротким углеводородным радикалом показывают уникальное реологическое поведение [1]. Это позволяет предположить, что растворы длинноцепочных алкилбетаинов, таких как олеиламидопропилбетаин (ОАПБ) и анионных ПАВ будут обладать высокими значениями вязкости.

Поэтому целью настоящей работы было исследование процессов самоорганизации, реологических свойств и структурных параметров смешанных мицеллярных растворов олеиламидопропилбетаина (ОАПБ) и додецибензолсульфоната натрия (ДБСН).

Экспериментальная часть

Материалы. В работе использовали олеиламидопропилбетаин (ОАПБ) компании ОАО «НИИПАВ». Согласно данным производителя, товарная форма продукта представляет собой

водный раствор, содержащий 20 мас.% ОАПБ, 0.3 мас.% олеиламидопропилдиметиламина и 3.6 мас.% хлорида натрия. ОАПБ представляет собой цвиттерионное ПАВ, молекула которого содержит аминную и карбоксильную группы. В кислой среде карбоксильная группа протонируется, и тогда ОАПБ ведет себя как катионное ПАВ. В нейтральной и щелочной среде молекула ОАПБ представляет собой цвиттер-ион [6]. В настоящей работе рН растворов равнялось 7, следовательно, ОАПБ был в цвиттер-ионной форме.

Додецилбензолсульфонат натрия (ДБСН), предоставленный компанией Tokyo Kasei Kogyo Co. (чистота > 99%), был использован без предварительной очистки. Его критическая концентрация мицеллообразования в воде составляет 1.4·10⁻³ моль/л [7].

Для приготовления растворов использовали деионизированную дистиллированную воду, полученную на установке Milli – Q фирмы Millipore Waters.

Приготовление образцов. Образцы получали смешиванием соответствующих водных растворов ПАВ. Все образцы перемешивали в течение 5-6 часов, затем выдерживали около суток для установления равновесия. При температуре исследования (20 ^{o}C) приготовленные растворы были гомогенными и прозрачными.

Определение межфазного натяжения. Для измерений межфазного натяжения использовали классический квазидинамический метод «отрыва кольца» (метод Дю Нуи). Измерения проводили на тензиметре К9 (KRUSS, Германия), который определяет поверхностное натяжение натяжение на границе раздела фаз с помощью подвешенного к точным весам оптимально смачиваемого измерительного кольца. При измерении кольцо полностью погружалось в раствор и поднималось из жидкости, смачивающей его, усилие отрыва и есть сила поверхностного натяжения. Связь поверхностного натяжения с силой F, необходимой для отрыва от поверхности жидкости тонкого кольца радиуса R, хорошо смачиваемого жидкостью (краевой угол смачивания $\theta = 0^{\circ}$), описывается выражением: $F = mg + 4\pi R$, где m — масса кольца, g - ускорение свободного падения.

Реологические измерения. Реологические измерения при постоянном и динамическом сдвиге проводили на реометре Haake RheoStress 150L (Германия) с использованием измерительных ячеек двух видов. Для растворов с низкой вязкостью применяли измерительную ячейку типа коаксиальных цилиндров с двойным зазором (диаметр внешнего цилиндра - 21.7 мм, диаметр внутреннего цилиндра - 18 мм, высота - 55 мм). Высоковязкие образцы исследовали с помощью измерительной ячейки конус-плоскость с диаметром 35 мм и углом конуса 2°.

В режиме постоянного сдвига эксперименты проводили в диапазоне напряжений от 0.002 до 100 Па. Вязкость растворов η определяли как коэффициент пропорциональности между приложенным напряжением и скоростью сдвига

образца $\eta = \sigma/\psi$. В области малых значений скорости сдвига вязкость выходила на плато (не зависела от напряжения). Это значение принимали за максимальную ньютоновскую вязкость η_0 (вязкость при нулевой скорости сдвига).

Измерения при динамическом сдвиге проводили в частотном диапазоне 100 - 0.001 рад/с. Динамический режим позволил получить частотные зависимости упругой G' и вязкой G'' составляющих комплексного модуля упругости ($G^* = G' + iG''$), из анализа которых были определены значения модуля упругости на плато G_{θ} и времени релаксации t_{pex} .

В динамическом режиме значения амплитуды напряжения выбирали таким образом, чтобы обеспечить проведение экспериментов в линейной вязкоупругой области, где динамические модули не зависят от приложенного напряжения.

Динамическое светорассеяние. Интенсивность рассеянного света измеряли на установке для исследования статического динамического светорассеяния Photocor Complex (Россия). Источником лазерного излучения служил термостабилизированный диодный мощностью 10 мВт и длиной волны 650 нм. Автокорреляционные функции флуктуаций интенсивности рассеянного света при исследовании динамического рассеяния лазерного света измеряли при помощи 288-канального коррелятора «Photocor-Математическую обработку результатов FC». измерений проводили при помощи программы DynaLS, коэффициенты диффузии D рассчитывали автокорреляционных функций Гидродинамический кумулянтов. радиус рассеивающих частиц R_h оценивали по формуле Стокса-Эйнштейна: $R_k = k_B T / 6 m \eta_0 D$. где k_B константа Больцмана, T – температура, r_0 – вязкость растворителя.

Исследуемые растворы обеспыливали фильтрованием через мембранные фильтры с диаметром пор $0.45~\rm Mkm$. Измерения проводили при температуре $20~\rm ^{\circ}C$.

Результаты и их обсуждение

Определение поверхностной активности, критических концентраций мицеллообразования (ККМ), состава смешанных мицелл играет важную роль в моделировании структуры и свойств смешанных мицеллярных систем. В настоящей работе поверхностно-активные свойства ОАПБ, ДБСН и их смесей оценивались по снижению поверхностного натяжения на границе раздела фаз водный раствор ПАВ - воздух методом отрыва кольца. Как видно ИЗ рис.1, изотермы поверхностного натяжения растворов имеют классический вид, то есть с ростом концентрации ПАВ поверхностное натяжение сначала снижается, а при достижении ККМ принимает постоянное значение (или слабо падает).

Из рис.1 видно, что существует выраженная зависимость ККМ от соотношения между ПАВ в смеси. В узкой концентрационной области вблизи чистого ДБСН значения ККМ при добавлении ОАПБ резко уменьшаются. Однако при дальнейшем

увеличении концентрации цвиттер-ионного ПАВ значения ККМ меняются мало, онипрактически постоянны вплоть до области составов вблизи чистого ОАПБ.

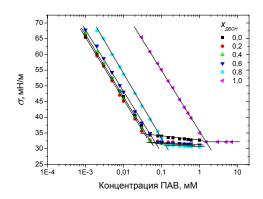


Рис. 1 - Изотермы поверхностного натяжения водных растворов ОАПБ, ДБСН и их смесей, $\mathbf{t} = 20^{o}C$

Как и значения ККМ, предельные значения поверхностного натяжения смесей ПАВ уменьшаются по сравнению с растворами этих ПАВ, взятых в отдельности, демонстрируя синергизм снижения поверхностного натяжения. То есть компоненты смеси вносят неаддитивный вклад в понижение поверхностного натяжения. В результате наблюдаться нелинейная зависимость предельного поверхностного натяжения от относительного содержания двух ПАВ. Отклонение от линейности может быть обусловлено образованием компонентами смеси энергетически выгодных структур и свидетельствует о синергическом эффекте. Понятия синергизма подразумевает наличие между компонентами смеси избыточного притяжения и тогда его можно охарактеризовать количественно термодинамическими величинами [8].

термодинамического Для описания поведения смешанных мицеллярных растворов ОАПБ и **ДБСН** был использован подход, псевдофазовой основанный на модели мицеллообразования, позволивший рассчитать параметр взаимодействия между молекулами ПАВ и состав смешанных мицелл [9].

Расчет показал, что состав мицелл почти не зависит от состава раствора. При увеличении мольной доли ДБСН в растворе в 8 раз, его содержание в смешанной мицелле возрастает всего в 2.3 раза. Это связано с тем, что смешанные мицеллы обогащены более поверхностно-активным ПАВ ОАПБ, ККМ которого на порядок меньше, чем у ДБСН.

Зависимость рассчитанных значений параметров взаимодействия от соотношения ОАПБ и ДБСН приведена на рис.2. Отрицательные значения параметров взаимодействия говорят о высокой степени сродства молекул компонентов смеси в смешанных мицеллах за счёт сильного электростатического притяжения между ними [10,11]. Сравнимые величины параметров взаимодействия были получены в литературе для

смешанных растворов цвиттер-ионных и анионных ПАВ [4,5,10].

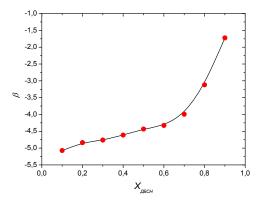


Рис. 2 — Зависимость параметра взаимодействия β в смешанной мицелле ОАПБ/ДБСН от мольной доли ДБСН в смеси($X_{\mathit{ДБСH}}$), $t = 20\,^{o}C$

Значения параметра взаимодействия удовлетворяют выполнению первого условия синергизма [5] при мицеллообразовании: $\beta < 0$. Абсолютное значение натурального логарифма отношения ККМ исследуемых ПАВ $ln\left(\frac{C_l^m}{C_2^m}\right) = 3.4$, меньше

абсолютного среднего значения параметров взаимодействия $\left|oldsymbol{eta}_{cped}\right|=4.1,$ что также отвечает условию синергизма.

Наряду с агрегативными свойствами в работе было исследовано поведение смешанных растворов ОАПБ и ДБСН в «средней» области концентраций - ККМ до области образования высоковязких растворов. Здесь большое внимание было уделено определению реологических свойств растворов и структурных характеристик агрегатов, связи между структурными изменениями и вязкостью.

В ходе реологических исследований изменяли общую концентрацию ПАВ в растворах, при фиксированной относительной весовой доле ДБСН в смеси (0.02), обеспечивающей максимальное значение вязкости [12]. Полученные зависимости динамической вязкости от скорости сдвига и общей концентрации ПАВ представлены на рис. 3.

Видно (рис.3), что с ростом концентрации вязкости увеличиваются значения ПАВ несколько порядков: от 10⁻³ до 10² Па·с. При этом, самые вязкие растворы с общим содержанием ПАВ выше 1.0 мас.% при комнатной температуре приобретают вид плотных гелей. Подобные изменения вязкости растворов объясняют образованием смешанных цилиндрических мицелл ПАВ. Такие длинные мицеллы ведут себя подобно полимерным цепям. В частности, они образуют сетку топологических зацеплений, в результате чего приобретает раствор высокую вязкость. Действительно, сильное уменьшение вязкости смешанных растворов ОАПБ и ДБСН увеличении скорости сдвига свидетельствует о присутствии в растворах частиц анизометричной формы, которые при больших сдвиговых деформациях ориентируются в направлении течения.

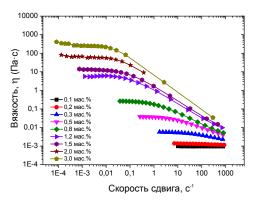


Рис. 3 — Зависимость динамической вязкости η от скорости сдвига и общей концентрации ПАВ при $20^{\circ}C$

В целом, полученные реологические данные многообразии происходящих смешанных растворах ОАПБ и ДБСН структурных пониманию характера помогают данные, полученные методом фотонно корреляционной спектроскопии (ФКС). Метод ФКС, из временных корреляционных функций рассеяния, позволяет получить явный вил функций распределения, которые показывают относительный рассеивающих вклад центров гидродинамическими радиусами R_h в общую интенсивность рассеянного при данном угле света.

Как показывают данные динамического светорассеяния, при общей концентрации ПАВ в растворе $0.01 \le$ c ≤0.25 мас.% распределения унимодальна. То есть, в растворе присутствуют агрегаты только одного размера, гидродинамический радиус которых равен 20 нм. Поскольку трудно представить сферическую мицеллу такого размера при длине полностью вытянутой молекулы ОАПБ ~ 3.63 нм, очевидно, что мы имеем дело с небольшими мицеллярными агрегатами цилиндрической формы. Образование цилиндрических агрегатов при такой концентрации ПАВ видится вполне возможным, поскольку смешанные растворы ОАПБ и ЛБСН имеют очень низкие значения ККМ ($\sim 0.04 \, MM$).

При увеличении общей концентрации ПАВ в растворе $(0.25 \le c \le 1.0 \text{ мас.}\%)$ функции становятся бимодальными распределения характеризуются наличием «быстрой» и «средней» моды. Дальнейшее увеличение общей концентрации ПАВ растворе ($1.0 \le c \le 3.0$ мас.%) приводит к еще более сложной картине: функция распределения становится тримодальной и помимо «быстрой» и характеризуется «средней» моды наличием «медленной» моды.

Следует что аналогичное отметить, мультимодальное распределение было получено в литературе для растворов других вязкоупругих ПАВ [13-18]. Согласно данным, литературным отклонение распределения функции ОТ унимодальной может быть обусловлено

присутствием агрегатов трёх типов. «Быстрая» мода характеризует диффузию небольших агрегатов сферической или цилиндрической формы [13,14,19,20,22]. «Средняя» мода описывает движение более крупных цилиндрических агрегатов и локальных кластеров, образованных несколькими цилиндрическими мицеллами [13,14]. «Медленная» мода объясняется присутствием в объеме раствора образующейся сеточной структуры, при переплетении между собой червеобразных мицелл [13,14,21].

Соотношение Стокса Эйнштейна позволяет рассчитать гидродинамические радиусы R_h агрегатов, диффузия которых характеризуется «быстрой» и «средней» модами. Как видно из рис.4, размеры малых частиц не изменяются с изменением общей концентрации ПАВ, что говорит в пользу представления об их глобулярной форме (жесткие стержни). Напротив, размеры локальных кластеров цилиндрических мицелл увеличиваются с ростом концентрации ПАВ (рис.4), при этом прослеживается явная аналогия в ходе зависимостей вязкости этих агрегатов и их гидродинамических радиусов.

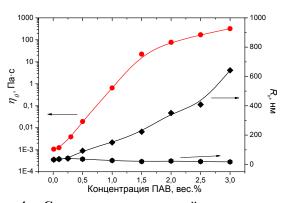


Рис. 4 - Сравнение зависимостей вязкости η_{θ} и гидродинамического радиуса R_h от концентрации водных растворов смеси ОАПБ/ДБСН. $W_{ДБСH}=0.02$, $t=20^{\circ}C$

Таким образом, в работе показано, что в смешанных растворах ОАПБ и ДБСН наблюдаются синергетические эффекты снижения поверхностного обусловленные электростатическим натяжения, притяжением между молекулами цвиттер-ионного и анионного ПАВ. Методом динамического рассеяния света, в объеме смешанных растворов ОАПБ и ДБСН обнаружено сосуществование трех «типов» агрегатов: малых мицелл, локальных кластеров и пространственной мицеллярной сетки зацеплений длинных цилиндрических мицелл. Также, с помощью ДРС установлена корреляция между структурными превращениями в мицеллярном растворе и изменениями вязкости.

Исследование выполнено при поддержке Министерства образования и науки Российской Федерации, соглашения №8821 и №14.В37.21.0457.

Литература

- Interactions between Betaine-Type Zwitterionic and Anionic Surfactants in Mixed Micelles / T. Iwasaki, M. Ogawa, K. Esumi, K. Meguro // Langmuir. – 1991. – V.7. P.30-35.
- Synergistic Sphere-to-Rod Micelle Transition in Mixed Solutions of Sodium Dodecyl Sulfate and Cocoamidopropyl Betaine / N.C. Christov, N.D. Denkov, P.A. Kralchevsky, K.P. Ananthapadmanabhan, A. Lips // Langmuir. – 2004. – V.20. – P.565-571.
- 3. Mixed Solutions of Anionic and Zwitterionic Surfactant (Betaine): Surface-Tension Isotherms, Adsorption, and Relaxation Kinetics / K.D. Danov, S.D. Kralchevska, P.A. Kralchevsky, K.P. Ananthapadmanabhan, A. Lips // Langmuir. 2004. *V.20. P. 5445-5453*.
- Rosen, M.J. Synergism in Mixtures Containing Zwitterionic Surfactants / M.J. Rosen // Langmuir. – 1991. – V.7. – P.885-888.
- Rosen, M.J. Predicting synergism in binary mixtures of surfactants / M.J. Rosen // Progr Colloid & Polym. Sci. – 1994. – V.95. P.39-47.
- Effect of the Intramolecular Charge Separation Distance on the Solution Properties of Betaines and Sulfobetaines / J.G. Weers, J.F. Rathman, F.U. Axe, C.A. Crichlow, L.D. Foland, D.R. Scheuing, R.J. Wiersema, A.G. Zielske // Langmuir. – 1991. - V.7. – P.854-867.
- 7. Philippova O.E. Interaction of Hydrophobically Modified Poly(acrylic acid) Hydrogels with Ionic Surfactants / O.E. Philippova // Macromolecules. 1996. V.29. P.2822.
- Соболева, О.А. Смешанные мицеллы и адсорбционные слои неионогенного поверхностно-активного вещества с катионным (мономерным и димерным) / О.А. Соболева, М.В. Кривобокова // Вестник московского университета. 2004 Серия 2. Химия. Т.45(5) С.344-349.
- Holland, P.M. Mixed Surfactant Systems / P.M. Holland, D.N. Rubingh // American Chemical Society Symposium. – Washington: Amer. Chem. Soc., 1992. - P.491.
- Shiloach, A. Prediction of Critical Micelle Concentrations and Synergism of Binary Surfactant Mixtures Containing Zwitterionic Surfactants / A. Shiloach, D. Blankschtein // Langmuir. – 1997. – V.13. – P. 3968-3981.
- Rosen, M.J. Phenomena in mixed surfactant systems / M.J. Rosen // Amer. Chem. Soc. Symp. – Washington, 1986. - P.144.
- 12. Куряшов, Д.А. Реологические свойства смешанных мицеллярных растворов цвиттерионного и анионного

- ПАВ / Д.А. Куряшов, Н.Ю. Башкирцева, И.Н. Дияров // Вестник Казанского технологического университета. -2009. № 4. C. 260-267.
- 13. Formation and Disruption of Viscoelastic Wormlike Micellar Networks in the Mixed Surfactant Systems of Sucrose Alkanoate and Polyoxyethylene Alkyl Ether / A. Maestro, D.P. Acharya, H. Furukawa, J.M. Gutie´rrez, M.A. Lo´pez-Quintela, M. Ishitobi, H. Kunieda // J. Phys. Chem. B. 2004.-V.108 (37). P.14009-14016.
- Viscoelastic Micellar Solutions in Nonionic Fluorinated Surfactant Systems / D.P. Acharya, S.C. Sharma, C. Rodriguez-Abreu, K. Aramaki // J. Phys. Chem. B – 2006. V.110. - P.20224-20234.
- Wormlike micelles and microemulsions in aqueous mixtures of sucrose esters and nonionic cosurfactants / C. Rodriguez-Abreua, K. Aramakia, Y. Tanakaa, M. Arturo Lopez-Quintelab, M. Ishitobic, H. Kunieda // J. Colloid Interface Sci. – 2005. – V.291. - P.560-569.
- Duval, M. Temperature-Induced Growth of Wormlike Copolymer Micelles / M. Duval, G. Waton, F. Schosseler // Langmuir. - 2005. - V.21. - P.4904-4911.
- 17. Viscoelastic Properties of Hydrocarbon/Fluorocarbon Mixed Wormlike Micelles at High Ionic Strength / E. Buhler, C. Oelschlaeger, G. Waton, S.J. Candau // J. Phys. Chem. B. 2004. V.108. P.11236-11243.
- 18. Buhler, E. Dynamical Properties of Wormlike Micelles: A Light Scattering Study / E. Buhler, J.P. Munch, S.J. Candau // J. Phys. II France. 1995. V.5. P.765-787.
- Rheological and Light Scattering Studies of Cationic Fluorocarbon Surfactant Solutions at Low Ionic Strength / C. Oelschlaeger, G. Waton, E. Buhler, S.J. Candau, M.E. Cates // Langmuir. - 2002. – V.18(8). P. - 3076-3085.
- 20. pH-Regulated Molecular Self-Assemblies in a Cationic/Anionic Surfactant System: From a «1/2» Surfactant Pair to a «1/1» Surfactant Pair [Text] / Y. Lin, X. Han, X. Cheng, J. Huang, D. Liang, C. Yu // Langmuir. 2008. V.24 (24), P. 13918-13924.
- Dynamic Light Scattering in Transient Reversible Gels [Text] / M. Carmen Blanco, D. Leisner, C. Va'zquez, M. Arturo Lo'pez-Quintela // Langmuir. - 2000. - V.16. -P.8585-8594.
- 22. Куряшов, Д.А. Влияние температуры на вязкоупругие свойства растворов смешанных цилиндрических мицелл цвиттерионного и анионного ПАВ / Куряшов Д. А., Филиппова О. Е., Молчанов В. С., Башкирцева Н. Ю., Дияров И. Н. // Вестник Казанского технологического университета. 2010. № 2. С. 225-230.

[©] Д. А. Куряшов - к.х.н. КНИТУ, vavilon9@gmail.com; А. В. Лужецкий - к.т.н. КНИТУ, luzhetskiy@yandex.ru; С. В. Захаров - ИОФХ им. А.Е. Арбузова КазНЦ РАН, zakharov.iopc@gmail.com; Р. Р. Кашапов - ИОФХ им. А.Е. Арбузова КазНЦ РАН, kashapov@iopc.ru; Е. И. Яцкевич - ИОФХ им. А.Е. Арбузова КазНЦ РАН, katerina.yatzkevitch@yandex.ru; Б. Р. Вагапов – КНИТУ, boulat88@gmail.com.