В. А. Бабкин, А. В. Игнатов, О.В.Стоянов, Г.Е. Заиков

КВАНТОВО-ХИМИЧЕСКИЙ РАСЧЕТ НЕКОТОРЫХ МОНОМЕРОВ КАТИОННОЙ ПОЛИМЕРИЗАЦИИ С МАЛЫМИ ЦИКЛАМИ

Ключевые слова: квантово-химический расчет, метод MNDO, бицикло[6, 1, 0]нонан, бицикло[5,1,0]октан, кислотная сила.

Впервые выполнен квантово-химический расчет молекул бицикло[6, 1, 0]нонана и бицикло[5,1,0]октана методом MNDO с оптимизацией геометрии по всем параметрам стандартным градиентным методом. Получено оптимизированное геометрическое и электронное строение этих соединений. Теоретически оценена их кислотная сила. Установлено, что молекулы бицикло[6, 1, 0]нонана и бицикло[5,1,0]октана относятся к классу очень слабых кислот (pKa>14).

Keywords: quantum chemical calculation, method MNDO, bicyclo[6, 1, 0]nonane, bicyclo[5, 1, 0]octane, acid strength.

For the first time it is executed quantum chemical calculation of the molecules of bicyclo[6, 1, 0] nonane and bicyclo[5, 1, 0] octane by MNDO method with optimization of geometry on all parameters. The optimized geometrical and electronic structures of these connections are received. Acid forces of bicyclo[6, 1, 0] nonane and bicyclo[5, 1, 0] octane are theoretically appreciated. It is established, than it to relate to a class of very weak H-acids.

Введение

Целью настоящей работы является квантовохимический расчет молекул бицикло[6, 1, 0]нонана и бицикло[5,1,0]октана — соединений с малыми циклами, которые являются классическими мономерами катионной полимеризации [1], методом MNDO с оптимизацией геометрии по всем параметрам стандартным градиентным методом, встроенным в РС GAMESS[2], в приближении изолированной молекулы в газовой фазе и теоретическая оценка его кислотной силы. Для визуального представления моделей молекул использовалась известная программа MacMolPlt[3].

Результаты расчетов

Оптимизированное геометрическое и электронное строение, общая энергия и электронная энергия молекул бицикло[6, 1, 0]нонана и бицикло[5,1,0]октана получены методом MNDO и показаны на рис. 1-2 и в табл.1-2. Применяя известную формулу pKa=42,11-147,18 $q_{\text{max}}^{H_+}$ [4-5] ($q_{\text{max}}^{H_+}$ =+0,04 - максимальные заряды на атомах водорода, pKa-универсальный показатель кислотности см. табл.1-2), которая с успехом используется, например, в работах [6-15], находим значения кислотной силы равные pKa = 36.

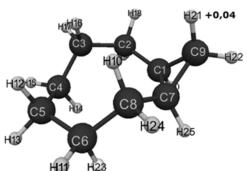


Рис. 1 - Геометрическое и электронное строение молекулы бицикло[6, 1, 0]нонана (E_0 = -132940 кДж/моль, E_{20} = -739496 кДж/моль)

Таким образом, нами впервые выполнен квантово-химический расчет молекул бицикло[6, 1, 0]нонана и бицикло[5,1,0]октана методом MNDO. Получено оптимизированное геометрическое и электронное строение этих соединений. Теоретически оценены их кислотная сила pKa = 36.

Установлено, что бицикло[6, 1, 0]нонан и бицикло[5,1,0]октан относятся к классу очень слабых H-кислот (pKa>14).

Таблица 1 - Оптимизированные длины связей, валентные углы и заряды на атомах молекулы бицикло[6, 1, 0]нонана

Длины	R,A	Валентные углы	Град
связей	,		1
C(1)-C(2)	1,52	C(3)-C(2)-C(1)	121
C(2)-C(3)	1,54	C(4)-C(3)-C(2)	117
C(3)-C(4)	1,54	C(5)-C(4)-C(3)	117
C(4)-C(5)	1,54	C(6)-C(5)-C(4)	118
C(5)-C(6)	1,54	C(8)-C(6)-C(5)	117
C(6)-C(8)	1,54	C(7)-C(8)-C(6)	115
C(7)-C(1)	1,54	C(2)-C(1)-C(7)	131
C(8)-C(7)	1,52	C(1)-C(7)-C(8)	129
C(9)-C(7)	1,53	C(1)-C(7)-C(9)	60
H(10)-C(8)	1,11	C(7)-C(8)-H(10)	111
H(11)-C(6)	1,12	C(5)-C(6)-H(11)	107
H(12)-C(5)	1,11	C(4)-C(5)-H(12)	110
H(13)-C(5)	1,12	C(4)-C(5)-H(13)	107
H(14)-C(4)	1,11	C(3)-C(4)-H(14)	111
H(15)-C(4)	1,12	C(3)-C(4)-H(15)	107
H(16)-C(3)	1,11	C(2)-C(3)-H(16)	109
H(17)-C(3)	1,12	C(2)- $C(3)$ - $H(17)$	106
H(18)-C(2)	1,11	C(1)-C(2)-H(18)	108
H(19)-C(2)	1,12	C(1)-C(2)-H(19)	107
H(20)-C(1)	1,11	C(2)- $C(1)$ - $H(20)$	108
H(21)-C(9)	1,10	C(1)-C(9)-H(21)	120
H(22)-C(9)	1,10	C(1)-C(9)-H(22)	119
H(23)-C(6)	1,11	C(5)-C(6)-H(23)	109
H(24)-C(8)	1,12	C(6)-C(8)-H(24)	108
H(25)-C(7)	1,11	C(1)-C(7)-H(25)	113

Таблица 2 - Оптимизированные длины связей, валентные углы и заряды на атомах молекулы бицикло[5,1,0]октана

Длины	R,A	Валентные углы	Град
связей			1 / /
C(2)-C(1)	1,54	C(2)-C(8)-C(1)	61
C(3)-C(1)	1,52	C(6)-C(5)-C(2)	115
C(4)-C(3)	1,54	C(2)-C(1)-C(3)	124
C(5)-C(2)	1,52	C(1)-C(3)-C(4)	115
C(5)-C(6)	1,54	C(1)-C(2)-C(5)	124
C(6)-C(7)	1,54	C(7)-C(6)-C(5)	117
C(7)-C(4)	1,54	C(8)-C(2)-C(5)	124
C(8)-C(2)	1,53	C(4)-C(7)-C(6)	118
C(8)-C(1)	1,53	C(3)-C(4)-C(7)	117
H(9)-C(1)	1,10	C(1)-C(2)-C(8)	60
H(10)-C(2)	1,10	C(2)-C(1)-C(8)	60
H(11)-C(3)	1,12	C(2)-C(1)-H(9)	115
H(12)-C(3)	1,11	C(1)-C(2)-H(10)	115
H(13)-C(4)	1,11	C(1)-C(3)-H(11)	108
H(14)-C(4)	1,12	C(1)-C(3)-H(12)	111
H(15)-C(5)	1,12	C(3)-C(4)-H(13)	110
H(16)-C(5)	1,11	C(3)-C(4)-H(14)	108
H(17)-C(6)	1,11	C(2)-C(5)-H(15)	108
H(18)-C(6)	1,12	C(6)-C(5)-H(15)	108
H(19)-C(7)	1,12	C(2)-C(5)-H(16)	111
H(20)-C(7)	1,11	C(6)-C(5)-H(16)	109
H(21)-C(8)	1,10	C(7)-C(6)-H(17)	110
H(22)-C(8)	1,10	C(7)-C(6)-H(18)	107
		C(4)-C(7)-H(19)	107
		C(4)-C(7)-H(20)	109
		C(2)-C(8)-H(21)	120
		C(1)-C(8)-H(21)	120
		C(2)-C(8)-H(22)	119
		C(1)-C(8)-H(22)	119

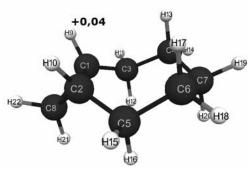


Рис. 2 - Геометрическое и электронное строение молекулы бицикло[5, 1, 0]октана (E_0 = -117876 кДж/моль, $E_{\text{эл}}$ = -612806 кДж/моль)

Литература

- 1. Дж Кеннеди. *Катионная полимеризация олефинов*. Издво «Мир»— М., 1978. 431 с.
- 2. M.W. Shmidt, K.K. Baldrosge, J.A. Elbert, M.S. Gordon, and anothers General Atomic and Molecular Electronic Structure Systems. *J. Comput. Chem.* №14. P. 1347-1363, 1993
- B.M. Bode and M.S. Gordon. MacMolPlt: A Graphical User Interface for GAMESS. J. Molec. Graphics. №16. P. 133-138, 1998.
- 4. V. A. Babkin, R. G. Fedunov, O. A. Ponomarev, Ju. A. Sangalov, E. Ju. Sangalov, K. S. Minsker, S. K. Minsker, G. E. Zaikov. Quantum −Chemical calculation of parameters of acidic strength of reactive fuels by MNDO method. *Oxidation Communications*, V. 21, № 4, pp. 454-460,1998
- 5. V.A. Babkin, R.G. Fedunov, K.S. Minsker and anothers. *Oxidation communication*, №1, 25, c. 21-47, 2002
- 6. В.А. Бабкин, К.С. Медведева, С.П. Белоусов, Л.Ф. Стоянова, Г.Е. Заиков, Х.Э. Харлампиди, О.В. Стоянов. Квантово-химический расчет методом МNDO и оценка кислотной силы некоторых стиролов. *Вести. Казан. технол. ун-та.* Т. 15, №5, с. 7-12, 2012.
- 7. В.А. Бабкин, С.А. Белозеров, Г.Е. Заиков, О.В. Стоянов, С.Ю. Софьина. Квантово-химический расчёт некоторых молекул производных индена методом MNDO. *Вести. Казан. технол. ун-та.* Т. 15, №5, с. 15-17, 2012.
- 8. В.А. Бабкин, Д.С. Андреев, А.Н. Игнатьев, С.П. Белоусов, Г.Е. Заиков, Р.Я. Дебердеев, О.В. Стоянов. Геометрическое и электронное строение некоторых силоксандиолов. *Вестн. Казан. технол. ун-та.* Т. 15, №6, с. 15-20, 2012.
- 9. В.А. Бабкин, А.А. Пристансков, Г.Е. Заиков, А.Ф. Яруллин. Теоретическая оценка кислотной силы некоторых алициклических олефинов. *Вестин. Казан. технол. ун-та.* Т. 15, №8, с. 115-122, 2012.
- 10. В.А. Бабкин, Д.С. Андреев, Г.Е. Заиков, А.Ф. Яруллин. Квантово-химический расчёт некоторых молекул жидких кристаллов методом MNDO и AB INITIO. *Вестин. Казан. технол. ун-та.* Т. 15, №8, с. 103-115, 2012.
- 11. В.А. Бабкин, Д.В. Сивоволов, А.Ф. Яруллин, Г.Е. Заиков. Квантово-химический расчет молекулы 1,1-дихлор-2,2,3-триметил-циклопропана методом MNDO. *Вести. Казан. технол. ун-та.* Т. 15, №10, с. 106-108, 2012.
- 12. В.А. Бабкин, Д.В. Сивоволов, С.Н. Русанова, Г.Е. Заиков. Квантово-химический расчет молекулы фенилциклопропана методом МNDO. *Вестин. Казан. технол. ун-та.* Т. 15, №11, с. 22-24, 2012.
- 13. В.А. Бабкин, В.А. Белозеров, А.Ф. Яруллин, Г.Е. Заиков. Квантово-химический расчет молекулы 13,13-дибромбицикло [10,1,0] тридекана методом MNDO. *Вестин. Казан. технол. ун-та.* Т. 15, №13, с. 105-106, 2012.
- 14. В.А. Бабкин, А.С. Серебрякова, Г.Е. Заиков, А.Ф. Яруллин. Квантово-химический расчет молекулы D-лимонена методом MNDO. *Вести. Казан. технол. ун-та*. Т. 15, №13, с. 107-108, 2012.
- 15. В.А. Бабкин, Д.Е. Забазнов, Г.Е. Заиков, С.Ю. Софьина. Квантово-химический расчет молекулы изопропилциклобутана методом MNDO. *Вести. Казан. технол. ун-та.* Т. 15, №13, с. 119-120, 2012.

[©] В. А. Бабкин - д-р хим. наук, проф., зам. дир. по научной работе Себряковского филиала Волгоградского госуд. архитектурно- строительного ун-та; А. В. Игнатов - студ. того же ун-та, bartsimpson35@yandex.ru; О. В. Стоянов – д-р техн. наук, проф., зав. каф. технологии пластических масс КНИТУ, ov_stoyanov@mail.ru; Г. Е. Заиков - д-р хим. наук, проф., Институт биохимической физики РАН, chembio@sky.chph.ras.ru.