Ю. А. Тунакова, Ю. А. Шмакова, А. В. Чирков

ОПРЕДЕЛЕНИЕ СТЕПЕНИ ВЫВЕДЕНИЯ ИЗБЫТОЧНОГО КОЛИЧЕСТВА МЕТАЛЛОВ ИЗ ОРГАНИЗМА ИСХОДЯ ИЗ ПРИНИМАЕМЫХ ДОЗ БИОПОЛИМЕРНЫХ ЭНТЕРОСОРБЕНТОВ

Ключевые слова: биополимеры, энтеросорбенты, металлы.

Описана методология расчета степени выведения большого перечня металлов из организма в зависимости от сорбционной эффективности используемых энтеросорбентов.

Keywords: the biopolymers, enterosorbents, metals.

The methodology of calculation of a degree of deducing of the big list of metals from an organism is described depending on sorbtion efficiency used enterosorbents.

Введение

Как рассматривалось нами в предыдущих публикациях, жители современных мегаполисов находятся под воздействием высоких уровней полиметаллического загрязнения [1-4]. Поскольку время, необходимое для снижения вдвое от исходного содержания накопившегося в органе или организме металла составляет 5-10 и более лет (если поглощение преобладает над выведением), то происходит кумуляция металлов с последующим токсическим действием на весь организм в целом, следовательно, необходимо применять различные методы их выведения, детоксикации и сорбции. Для реализации этих целей наиболее эффективным является метод энтеросорбции, основанный на связывании и выведения из организма через желудочно-кишечный тракт с лечебной профилактической целью эндогенных и экзогенных веществ, надмолекулярных структур и клеток. В самыми безопасными настоящее время реализации этих задач признаны энтеросорбенты на основе биополимеров [5-6]. Рекомендации по приему энтеросорбентов производителей универсальны И не зависят ОТ уровня полиметаллической нагрузки, возраста факторов, поэтому необходимо разработать рекомендации по оптимизации использования биополимерных энтеросорбентов в зависимости от фактического поступления металлов.

Нами оценивалась сорбционная емкость наиболее распространенных доступных биополимерных энтеросорбентов «Полифепан» и «Феокарпин». В качестве энтеросорбента сравнения нами использовался самый эффективный сорбент активированный уголь, являющийся неспецифическим сорбентом, длительное использование которого не рекомендуется. Доказанным отрицательным фактором применения, угольных сорбентов, является сорбция витаминов, минеральных солей и других полезных веществ, а неспецифическая сорбция также ферментов (пепсина, трипсина. амилазы), что требует коррекции заместительной терапии ферментными препаратами. Кроме того, угольные энтеросорбенты могут оказывать повреждающее действие слизистую, и их не следует длительно использовать при наличии эрозивного или язвенного процесса в

желудочно-кишечном тракте. Углеволокнистые адсорбенты способны острыми кромками перфорировать слизь, взаимодействуя эритроцитами. Более безопасными в применении являются биополимерные энтеросорбенты [6,7]. Рассмотрим особенности структуры и свойств биополимерных выбранных энтеросорбентов. «Полифепан» создан на основе лигнина, который входит в состав ряда растительных пищевых продуктов и не является чужеродным для организма человека. Он изготавливается в виде влажного порошка (65-70%), обладает небольшой удельной (15-209 поверхностью M^2/Γ) объемом И сорбционного пространства $(0,15 \text{ cm}^3/\Gamma)$, крупными размерами частиц (0,1-0,5 мм). Благодаря этим свойствам, «Полифепан» способен сорбировать низко- и среднемолекулярные вещества, к которым относятся металлы. Имеющийся на его поверхности значительный набор функциональных (метаксильных, карбоксильных, карбонильных, различной природы гидроксильных обеспечивает адсорбцию, в т.ч. хемосорбцию и комплексообразование с различными сорбатами.

«Феокарпин» также является представителем сорбентов растительного происхождения. Он создан на основе биологически активных веществ хвои и пищевого энтеросорбента - микрокристаллической целлюлозы. Активными веществами его являются натуральный хвойный комплекс, содержащий производные хлорофилла, каротиноиды, полипренолы, соли жирных кислот и кислот. По механизму смоляных «Феокарпин» сходен с «Полифепаном», однако, благодаря большей удельной поверхности (в 2-26.7 раз) и объему сорбционного пространства пор (в 2.5-4 раза), соответствующих размерам мезо- и, преимущественно, микропор «Феокарпин» обладает свойством сорбции низкомолекулярных ксенобиотиков, в т.ч. и металлов [5,7].

Экспериментальная часть

Навеска сорбента заливалась раствором солей металлов. Выдерживалась, периодически перемешиваясь определенное, заданное время и отфильтровывалась через беззольный фильтр. В фильтрате измерялась конечная концентрация металлов методом атомно-абсорбционной

спектрофотометрии (ААС), как один из наиболее селективных. воспроизводимых метолов. позволяющих решать задачи определения сравнительной эффективности сорбентов отношении металлов. Следует отметить, что в настоящее время атомно-абсорбционный анализ является одним из наиболее точных аналитических методов, отличающимся высокой избирательностью и быстротой исполнения. Кроме того, во многих случаях этот метод является арбитражным, нормативов ориентировано большинство применение именно метода ААС.

Данный метод особенно удобен для анализа растворов, так как в этом случае диссоциация молекул анализируемого вещества на атомы может быть достигнута термически в пламени газовой горелки. В сильно окисленном воздушноацетиленовом пламени определение уровня металлов достаточно селективно.

Для каждого сорбента был проведен ряд параллельных наблюдений с различной экспозицией в растворе солей металлов. Растворы анализировались через 5 мин, 1 час, 6 часов и сутки экспозиции.

Навеска каждого сорбента отбиралась в соответствии с его рекомендуемым суточным Объем раствора солей количеством приема. металлов соответствовал 10-ти кратному (по весу) количеству сорбента (т.е. на 1 г сорбента 10 мл раствора). При подготовке металлов в составе смеси солей и их концентраций мы руководствовались следующими положениями: для применялись азотнокислые соли Zn, Cu, Fe, Co, Cd, Pb, Mn, Ni - т.е. наиболее распространенные как эссенциальные, так и токсичные металлы. При растворов использовались подготовке государственные стандарты (ГСО 7877-2000 (Рв), 7874-2000 (Cd), 7837-2000 (Zn), 7873-2000 (Ni), 6073-91 (Cu), 7834-2000 (Mn)) в соответствующих разведениях дистиллированной водой (фон ГСО 1 н HNO₂). Применялась стандартная стеклянная лабораторная посуда: пробирки и мерные цилиндры ГОСТ 1770-74.

Концентрации металлов растворе подбирались таким образом, чтобы во-первых, возможно было зафиксировать вероятные флуктуации концентраций, во-вторых, чтобы эти концентрации были близки к физиологическим. Исключением являются типичные тяжелые металлы (Pb, Co, Ni), так как в норме в организме их концентрации очень низки, поэтому для них была выбрана условная величина 1 мг/л. Таким образом, начальные концентрации металлов в тестовом растворе составили: Fe, Cu – 2 мг/л; Zn – 5 мг/л; Mn, Ni, Co, Cd, Pb - 1 мг/л.

Результаты исследования представлены в Таблица 1 с принятыми сокращениями: Уактивированный уголь, Ф-Феокарпин, П-Полифепан.

В результате исследования установлено, что наиболее эффективную сорбционную способность продемонстрировал активированный уголь (63%). Но его курсовое использование запрещено ввиду

неселективного выведения металлов и нарушения слизистой оболочки желудка. На втором месте по эффективности стоит «Полифепан», достаточно эффективно (35-40%), поглощающий большинство исследованных металлов. «Феокарпин» проявил меньшую сорбционную способность. По инструкциям к препаратам Полифепана» может использоваться не более 10 дней, «Феокарпин» может использоваться и более длительное время (15 дней и более), что выгодно его отличает в практическом применении (щадящая сорбция, сохранение микроэлементного баланса в организме).

Таблица 1 - Сорбция металлов в модельных и тестовом растворах (в скобках)

Opposit	V 5 M	Ф 5 и	П 5 м
Образец	У., 5 м У., 1 ч	Ф., 5 м Ф., 1 ч	П., 5 м П., 1 ч
	У., 6 ч	Ф., 1 ч	П., 6 ч
	У., 0 ч У., 24 ч	Ф., 0 ч Ф., 24 ч	П., 24 ч
	y., 24 4	Ψ., 24 4	11., 24 4
Fe	0,18	2,86	3,39
(1,94)	0,29	3,80	4,66
	0,30	4,47	5,75
	0	3,84	7,70
Cu	0	10,1	1,25
(1,87)	0	12,51	1,39
	0	16,60	1,72
	0	19,04	1,67
Zn	0	2,84	2,97
(5,1)	0	2,85	4,70
	0	2,91	3,28
	0	2,37	1,55
Mn	3,18	1,32	1,44
(0,97)	3,07	1,40	1,19
	1,42	1,44	1,65
	3,08	0,98	1,27
Ni	0	1,00	1,10
(1,09)	0	0,71	0,66
	0	0,77	0,57
	0	0,80	0,60
Co	0,14	0,64	0,90
(0,96)	0,08	0,62	0,53
	0	0,52	0,22
	0	0,41	0,22
Pb	0	0,9	0,6
(0,99)	0	0,8	0,61
	0	0,82	0,63
	0	0,81	0,51
Cd	0,06	0,81	0,87
(0,96)	0,06	0,86	0,95
	0,05	0,77	0,88
	0,01	0,88	0,82

Для обоснованного определения доз применения препаратов мы руководствовались следующими положениями. Согласно нашим расчетам, сорбционная эффективность различных сорбентов в заданном диапазоне концентраций колеблется в пределах 5-50 мкг/г. Учитывая то обстоятельство, что в эксперименте на каждый грамм сорбента бралось 10 мл раствора, можно использовать следующее отношение: 100 г сорбента

на 1 литр дуоденального содержимого – часовой объем секреции желудочного сока у детейподростков 12-14 лет. Снижение концентрации металлов при этом отношении составит от 17,2 до 23,5% (в среднем 20,4%), в зависимости от металла и характерной для него концентрации. Иначе говоря, каждый 1 г сорбента дает увеличение сорбции на 20,4/100=0,2% на 1 л дуоденального содержимого в течение часа. Таким образом, 10 г сорбента снизят концентрацию металлов в дуоденальном содержимом на 2% в течение часа, 10 дней обеспечит через снижение концентрации металлов в сыворотке не менее чем на 20% (в среднем по всем металлам или до 35,3% по свинцу). Таким образом, прием 10 г сорбента в течение суток может обеспечить снижение металлов в сыворотке на 2% от исходного.

Отметим также, что увеличение/снижение дозировки сорбента на 1 г, через 10 суток приведет к увеличению/замедлению снижения концентрации металлов в сыворотке крови на 2% от исходного.

Проверим предлагаемые положения для определения выведения свинца из организма с помощью биополимерных энтеросорбентов.

На 100 г сорбента -1 литр дуоденального содержимого — часовой объем секреции желудочного сока у детей-подростков 12-14 лет. Снижение концентрации свинца при этом отношении составит от 16,5% (0,033 мкг/мл от 0,2), то есть каждый 1 г сорбента дает увеличение сорбции на 16,5/100=0,165% на 1 л дуоденального содержимого в течение часа. 10 г сорбента снизят концентрацию металла в дуоденальном содержимом

на 1,65% в течение часа, что через 10 дней обеспечит снижение концентрации свинца в сыворотке не менее чем на 35%.

В результате всех проведенных исследований экспериментов, за основу усредненной сорбционной эффективности условного семидневного курса энтеросорбции содержание свинца следующие значения: организме снижается на 35%, меди на 15%, цинка на 19%, хрома на 39,6%, стронция на 40%, железа на 45%, кобальта на 22%, кадмия на 66%, никеля на 35% и марганца на 18%.

Литература

- 1. Ю.А. Тунакова, Е.С. Мухаметшина, Ю.А. Шмакова, Вестник казан. технол. ун-та, 14, 9, 74-79 (2011).
- 2. Ю.А. Тунакова, Е.С. Мухаметшина, Ю.А. Шмакова, Вестник казан. технол. ун-та, 14, 10, 96-102 (2011).
- 3. Ю.А. Тунакова, Е.С. Мухаметшина, Ю.А. Шмакова, Вестник казан. технол. ун-та, 14,12, 82-86 (2011).
- 4. Ю.А. Тунакова, Е.С. Мухаметшина, Ю.А. Шмакова, Вестник казан. технол. ун-та, 14, 14, 141-149 (2011).
- 5. В.Г. Фотеев, Г.П. Вдовина, И.П. Корюкина, Р.Р. Задин и др. Всероссийской науч. конф. Современные проблемы валеологии и эндокринологической реабилитации в лечебном и учебном процессе. Сб. материалов. Пенза, 1998.С. 39-40.
- 6. Н.А. Беляков Энтеросорбция механизм лечебного действия / Н.А.Беляков, А.В. Соломенников //Эфферентная терапия- т. 3- № 2-1997.
- 7. Ильина А.В., Ткачева Ю.В., Варламов В.П. // Прикл. биохим. и микробиол., Т. 8, 2, 132-135 (2002).

[©] **Ю. А. Тунакова** – д-р хим. наук, проф., зав. каф. общей химии и экологии КНИТУ им. А.Н. Туполева-КАИ, juliaprof@mail.ru; **Ю. А. Шмакова** – асп. каф. технологии пластических масс КНИТУ, kstu-material@mail.ru; **А. В. Чирков** – магистр КНИТУ.