Н. М. Селиванова, О. В. Шихобалова, А. Т. Губайдуллин, Ю. Г. Галяметдинов

СРАВНИТЕЛЬНАЯ ОЦЕНКА ЖИДКОКРИСТАЛЛИЧЕСКИХ СВОЙСТВ И СТРУКТУРНЫХ ХАРАКТЕРИСТИК ЛИОТРОПНЫХ МЕТАЛЛОМЕЗОГЕНОВ НА ОСНОВЕ ОКСИЭТИЛИРОВАННЫХ НЕИОННЫХ ПАВ

Ключевые слова: лиотропные жидкие кристаллы, ион лантана, неионные ПАВ, структура мезофазы.

Проведен сравнительный анализ жидкокристаллических свойств лиотропных лантан-содержащих систем на основе неоинных ПАВ с различным числом оксиэтилированных групп методом поляризационной оптической микроскопии. На основе данных рентгеновской дифракции проведена оценка структурных характеристик лиотропных мезогенов с различной надмолекулярной организацией в мезофазе: ламеллярной и гексагональной. Показано, что в значительной степени тип проявляемого мезоморфизма будет определятся строением гидрофильной части молекулы ПАВ.

Key words: lyotropic liquid crystal, lanthanum ion, nonionic surfactant, structure of mesophase.

Comparative analysis of liquid crystal properties of lyotropic lanthanum-containing system based on nonionic surfactants with different number of oxyethylated groups was made by polarizing optical microscopy. Structural characteristics of lyotropic mesogens with different supramolecular organization in the mesophase: lamellar and hexagonal were assessed based on the data of X-Ray diffraction. It is shown that the type of mesomorphism will be determined by the structure of the hydrophilic part of the surfactant molecules.

Введение

На сегодняшний день лиотропные жидкие кристаллы (ЛЖК) являются объектом интенсивного исследования в области нанотехнологии и биомедицины. Развитие методов темплатного синтеза наноструктурных материалов на основе мягких материалов «soft matter» инициировало интерес к классу лиотропных мезогенов на основе поверхностноактивных веществ. В водных средах, в определенных условиях фазового пространства данные вещества дифильного строения демонстрируют большое разнообразие жидкокристаллических фаз [1]. В темплатном синтезе данные мезофазы служат структурообразующим агентом вокруг которого формируется неорганический каркас. Изменение концентрационного соотношения сурфактант-растворитель открывает возможности контроля морфологии получаемого нанообъекта. Варьирование структуры гидрофильной и гидрофобной части молекулы ПАВ позволяет регулировать размер порового пространства ЖК темплата, а следовательно и размер наноматериала [2,3].

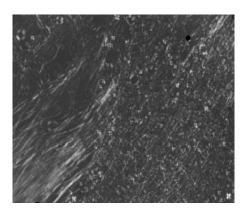
В области биомедицины лиотропные жидкие кристаллы используются в качестве модельных систем для понимания принципов надмолекулярной организации биообъектов, механизмов межмембранного транспорта [4]. Поскольку клеточные мембраны, хлоропласты, миелиновые оболочки нейронов, полипептиды, нуклеиновые кислоты, полисахариды, серое вещество мозга находятся в жидкокристаллическом состоянии [5], исследования свойств ЛЖК являются фундаментальной базой для изучения молекулярной организации и механизмов функционирования биообъектов. Основываясь на этом принципе биосистемы рассматриваются в структурном аспекте, что позволяет перейти к пониманию взаимосвязи молекулярной структуры и надмолекулярной организации с функцией живой клетки, как целого и ее отдельных компонентов. В последние время также проявляется интерес к ЛЖК как к транспортным системам доставки лекарственных препаратов и активных биомолекул [6-8]. В этом плане лиотропные мезофазы, термодинамически стабильные в широком интервале концентраций и температур, являются превосходными кандидатами в качестве носителей молекул гостя, а также улучшают растворимость лекарств и биоактивных субстанций [9-10].

Данная работа является продолжением исследования физико-химических свойств лантаноид-содержащих ЛЖК на основе сурфактантов $C_{12}EO_4$ и $C_{12}EO_{10}$ [11-16]. С целью установления влияния строения амфифила, в частности его полярной части, на характер надмолекулярной организации и структурные свойства проявляемых мезофаз были проведены исследования жидкокристаллических свойств и геометрических параметров молекулярных упаковок в мезофазе.

Экспериментальная часть

В работе использовались неионные ПАВ — монододециловый эфир декаэтиленгликоля $C_{12}H_{25}O(CH_2CH_2O)_{10}H$ ($C_{12}EO_{10}$), монододециловый эфир тетраэтиленгликоля $C_{12}H_{25}O(CH_2CH_2O)_4H$ ($C_{12}EO_4$), кристаллогидрат нитрата лантана $La(NO_3)_3\cdot 6H_2O$ (La), все вещества фирмы «Aldrich».

Лиотропные жидкокристаллические системы были синтезированы по методике, описанной в работе [12]. Предварительно кристаллогидрат нитрата лантана подвергался сушке для удаления избытка гидратированной воды в вакуумном шкафу при давлении 20 мбар, температуре 20° C в течении 15 минут. Исследовались системы $C_{12}EO_n/La/H_2O$ состава 75 %масс комплекса $C_{12}EO_n/La$ и 25 %масс H_2O . Мольное соотношение ПАВ:металл для систе


мы $C_{12}EO_{10}/La/H_2O$ составляло 1:2, а для $C_{12}EO_4/La/H_2O = 1:1$.

Жидкокристаллическое поведение синтезированных систем исследовали методом поляризационной оптической микроскопии (ПОМ) с использованием поляризационного микроскопа Olympus BX51 с высокоточной нагревательной системой Linkam. Для определения температур фазового перехода проводили нагревание образцов со скоростью нагрева 5 °С/мин. Температуры перехода мезофаза — изотропная жидкость фиксировали с точностью ± 2 °С.

Рентгенофазовые исследования проводились на автоматическом рентгеновском дифрактометре Bruker D8 Advance, оборудованном приставкой Vario и линейным координатным детектором Vantec. Использовалось CuKa излучение, монохроматизированное изогнутым монохроматором Йохансона, режим работы рентгеновской трубки 40 кВт, 40 мА. Эксперименты выполнены при комнатной температуре в геометрии Брэгг-Брентано с плоским образцом. Дифрактограммы регистрировались в диапазоне углов рассеяния 20 1-25°, инкремент 0,0081°, время набора спектра в точке варьировалось от 0,1 до 3,0 сек. Для каждого из образцов было получено несколько дифрактограмм в различных экспериментальных режимах и с различным временем набора данных.

Обсуждение результатов

Методом поляризационной оптической микроскопии были изучены жидкокристаллические свойства синтезированных лиотропных систем. При исследовании в поляризованном свете образца системы состава $C_{12}EO_4/La/H_2O$ 75/25 %масс наблюдалась текстура, представленная на рисунке 1.

Puc. 1 - Текстура, характерная для системы C₁₂EO₄/La/H₂O 75/25 %масс (×100)

Наблюдаемые ламеллы и мальтийские кресты, согласно [17] позволяют охарактеризовать данную мезофазу как ламеллярную.

Исследование системы состава $C_{12}EO_{10}/La/H_2O$ 75/25 %масс методом ПОМ показало наличие другой молекулярной упаковки. На рисунке 2 представлена веерная текстура, характеризующая наблюдаемую упаковку молекул в мезофазе как гексагональную [17].

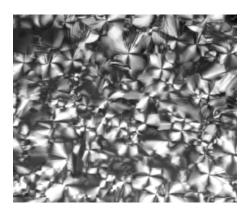


Рис. 2 - Текстура, характерная для системы C₁₂EO₁₀/La/H₂O 75/25 %масс (×100)

Таким образом, показано что Ln-содержащие системы на основе неионных ПАВ с различным числом оксиэтилированных групп формируют различные типы мезофаз. При использовании ПАВ с большим числом оксиэтилированных групп формировалась гексагональная мезофаза, а при малом количестве оксиэтилированных звеньев — ламеллярная. Аналогичное поведение наблюдалось и для бинарных систем $C_{12}EO_m/H_2O$ [18,12].

Значения температур фазовых переходов, наблюдаемые для синтезированных систем, представлены в таблице 1.

Таблица 1 - Жидкокристаллические и структурные свойства La-содержащих ЛЖК

Система	Тип мезо- фазы	Т _{ф.п.} , °С	d_1, A d_p, A		d _w , Å	a ₀ , Å ²
C ₁₂ EO ₄ / La ^{III} /H ₂ O	L	85	29,7	8,3	9,3	43,1
C ₁₂ EO ₁₀ / La ^{III} /H ₂ O	Н	81	56,4	51,6	4,9	84,1

Минимальная температура наблюдения мезофазы составляла 5 °C. Следует отметить, что, несмотря на различный тип надмолекулярной организации, температурный диапазон существования мезофаз имеет близкие значения.

Для подтверждения типа мезофаз и расчета структурных параметров использовался метод рентгенофазового анализа. На рисунке 3 представлена дифрактограмма системы $C_{12}EO_4/La/H_2O$ 75/25 %масс.

На дифрактограмме системы $C_{12}EO_4/La/H_2O$ наблюдаются четыре ярко выраженных Брэгговских пика при $2\theta=2,26^\circ,\ 4,53^\circ,\ 6,81^\circ$ и $9,08^\circ.$ Соответствующие межплоскостные расстояния d=38,9 Å, 19,4 Å, 12,9 Å и 9,7 Å находятся в соотношении 1:1/2:1/3:1/4. Данное соотношение межплоскостных расстояний свидетельствует о ламеллярной упаковке в мезофазе [19]. Модель упаковки ламеллярной системы представлена на рисунке 3.

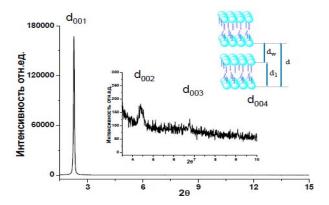


Рис. 3 - Дифрактограмма системы $C_{12}EO_4/La/H_2O$ 75/25 %масс

Используя данные о межслоевом расстоянии рассчитаны структурные параметры ламеллярной мезофазы. Толщину бислоя d_1 и толщину слоя воды d_w в ламеллярной мезофазе рассчитывали согласно [20] с учетом того, что вся вода находится в межслоевом пространстве, по уравнениям:

$$d_{1} = \left(\frac{\omega v_{s}}{(1 - \omega)v_{w} + \omega v_{s}}\right) d = \varphi d \tag{1}$$

$$d_{w} = d - d_{1} \tag{2}$$

где ω — массовая фракция ПАВ, υ_s и υ_w - удельный объем ПАВ и воды соответственно, и φ - объемная фракция ПАВ. Значение удельного объема $C_{12}\text{EO}_4$ равно 1,0617 см 3 /г.

Значение площади поперечного сечения молекулы ПАВ A в ламеллярной фазе рассчитывали из молекулярного объема молекулы ПАВ:

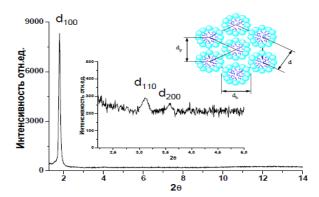
$$a_0 = \frac{2 \cdot V_m}{d_1} \tag{3}$$

$$V_m = \frac{M \cdot v_s}{N} \tag{4}$$

где V_m - молекулярный объем молекулы ПАВ, M – молекулярная масса ПАВ, N – число Авогадро.

Рассчитанные значения структурных параметров представлены в таблице 1.

Дифрактограмма системы $C_{12}EO_{10}/La/H_2O$, представлена на рисунке 4.


На дифрактограмме наблюдаются три Брэгговских пика при $2\theta = 1,8^{\circ}$, $3,1^{\circ}$ и $3,6^{\circ}$. Данным положениям пиков соответствуют межплоскостные расстояния d = 48,8 Å, 28,2 Å и 24,4 Å, значения которых находятся в соотношении $1:1/\sqrt{3}:2$. Данное соотношение значений межплоскостных расстояний свидетельствует о гексагональной упорядоченности системы [21].

Для гексагонально-упорядоченной жидкокристаллической системы структурные параметры рассчитывались, используя уравнения 5-8.

Диаметр цилиндра в гексагональной фазе рассчитывали в предположении, что мезофаза состоит из бесконечно длинных цилиндров [20]:

$$d_h = 2d\left(\frac{2\varphi}{\pi\sqrt{3}}\right)^{\frac{1}{2}} \tag{5}$$

где φ – объемная фракция ПАВ ($\upsilon_{\rm w}$ =1,0417 см³/г).

Puc. 4 - Дифрактограмма системы C₁₂EO₁₀/La/H₂O 75/25 %масс

Параметр элементарной ячейки d_p и расстояние между поверхностями цилиндров ПАВ d_w рассчитывали по следующим формулам:

$$d_p = \frac{2d}{\sqrt{3}} \tag{6}$$

$$d_{w} = d_{p} - d_{h} \tag{7}$$

Значение площади поперечного сечения молекулы ПАВ определяли как:

$$\boldsymbol{a}_0 = \frac{4V_m}{d_h} \tag{8}$$

Рассчитанные структурные параметры гексагональной мезофазы представлены в таблице 1.

Исходя из концепции параметра упаковки и данных рентгеновской дифракции, были оценены критический параметр упаковки P, рассчитанный по уравнению 9, и соответствующий тип формируемых агрегатов (таблица 2).

$$P = \frac{V}{a_0 I_{\text{max}}} \tag{9}$$

где a_0 - площадь поперечного сечения одной молекулы ПАВ, найдено из данных рентгеновской дифракции, V - объем углеводородной цепи, I_{max} — длина вытянутой алкильной цепи молекулы.

Для углеводородной цепи, содержащей n = 12 CH₂ групп V рассчитывался по уравнению 10:

$$V = 27.4 + 26.9 \cdot n$$

$$V = 350 \,\text{Å}^3$$
(10)

Длину вытянутой алкильной цепи молекулы $C_{12}EOm$ определяли как:

$$I_{\text{max}} = 1.5 + 1.265 \cdot n$$
 (11)
 $I_{\text{max}} = 16.7 \text{ Å}.$

Таблица 2 - Геометрия молекул ПАВ и их упаковка в агрегате

Система	a ₀ , Å ²	Р	Тип агрегата
C ₁₂ EO ₁₀ /La/H ₂ O	84,10	0,25	сферы
C ₁₂ EO ₄ /La/H ₂ O	43,09	0,49	цилиндры/везикулы

Согласно [22] критический параметр упаковки позволяет прогнозировать тип структуры, формируемым дифильным веществом и проанализировать тенденции в фазовом поведении. Найденные значения Р, представленные в таблице 2, позволили адекватно предсказать тип агрегатов неионных ПАВ формируемых только в растворе [23, 24]. Что же касается фазового поведения исследуемых систем в концентрированном состоянии, то критический параметр упаковки в нашем случае не является адекватным теоретическим критерием типа формируемых структур. Поскольку образующаяся структура это результат баланса между полярными и неполярными частями молекулы ПАВ, а присутствие иона лантана увеличивает полярную часть ПАВ, то согласно критическому параметру упаковки как в случае $C_{12}EO_4$, так и $C_{12}EO_{10}$ должна сохраняться общая тенденция к формированию сферических агрегатов. Однако, по данным ПОМ и рентгенофазового анализа, системы характеризуются ламеллярной и гексагональной структурой, соответственно. В рассматриваемой простой геометрической модели не учитываются факторы, оказывающие большое влияние на структуру агрегата. Прежде всего, это взаимодействие полярных групп в агрегате, а также влияние температуры и эффекты концентрации. В процессе формирования надмолекулярно организованного жидкого кристалла в случае C₁₂EO₁₀ будет происходить последовательная трансформация сферических агрегатов в цилиндрические, которые при дальнейшем увеличении концентрации агрегируются в гексагональные структуры. Для системы $C_{12}EO_4$ в концентрированном растворе везикула будет трансформироваться в ламеллярный бислой. В обзоре [18] предсказательный анализ фазового поведения основывался на оценке размера полярной части молекулы ПАВ при условиях транс конформации углеводородной цепи и известной плотности алканов. Согласно авторам. при $a_0 \ge 70 \ \text{Å}^2$ возможно формирование сфер, стержней или дисков, при $a_0 \le 47 \ \text{Å}^2$ образуются бислойные мицеллы. Полученные нами результаты адекватно вписываются в предлагаемую концепцию.

Таким образом, были изучены жидкокристаллические и структурные свойства La-содержащих лиотропных жидкокристаллических систем на основе неионных ПАВ. Показано, что тип мезоморфизма будет определятся строением полярной части молекулы ПАВ. Проведен сопоставительный анализ экспериментальных данных и теоретического подхода к рассмотрению типов агрегатов, формируемых в растворе дифильными молекулами.

Литература

- 1. Y. Wan, D. Zhao, *Chemical Reviews*, **107**, 7, 2821-2860 (2007):
- S.G. Kwon, T. Hyeon, Acc. Chem. Res., 41, 12, 1696-1709 (2008);

- 3. C. Wang, D. Chen, X. Jiao, Sci. Technol. Adv. Mater., 10, 1-11 (2009);
- 4. J.M. Pope, B.A. Cornell, *Chemistry and Physics of Lipids*, **24**, 27-43 (1979);
- 5. Г. Браун, Дж. Уолкен, Жидкие кристаллы и биологические структуры, Мир, Москва, 1982, 191с;
- S. Bhattacharya, J. Biswas, *Langmuir*, 26, 7, 4642-4654 (2010);
- 7. T.C. Le, X. Mulet, F.R. Burden, D.A. Winkler, *Mol. Pharmaceutics*, **10**, 4, 1368-1377 (2013);
- 8. R. Negrini, R. Mezzenga, *Langmuir*, **28**, 47, 16455-16462 (2012);
- 9. P. B. Ishai, D. Libster, A. Aserin, N. Garti, Y. Feldman, *J. Phys. Chem. B*, **114**, 40, 12785-12791 (2010);
- 10. Y. Cheng, Q. Wu, Y. Li, J. Hu, T. Xu, J. Phys. Chem. B, 113, 24, 8339-8346 (2009);
- 11. Н.М. Селиванова, В.С. Лобков, В.П. Барабанов, К.М. Салихов, В. Хаазе, Ю.Г. Галяметдинов, *Доклады АН Химия*, **401**, 3, 352-356 (2005);
- 12. Н.М. Селиванова, В.В. Осипова, Ю.Г. Галяметдинов, ЖФХ, **4**, 649-653 (2006);
- 13. Н.М. Селиванова, В.В. Осипова, Д.Е. Дановский, Ю.Г. Галяметдинов, *Вестник Казанского технологического университета*, 5, 30-35 (2007);
- Natalia M. Selivanova, Aliya I. Galeeva, Aidar T. Gubaydullin, Vladimir S. Lobkov, Yury G. Galyametdinov, *J. Phys. Chem. B*, 116, 735–742 (2012);
- 15. Н.М. Селиванова, Ю.Ф. Зуев. Ю.Г. Галяметдинов, *Жидкие кристаллы и их практическое использование*, **1**, 23, 60-67 (2007);
- Н.М. Селиванова, О.И. Гнездилов, А.Б. Конов, Ю.Г. Галяметдинов, Ю.Ф. Зуев, *Изв.РАН.сер.хим.*, 3, 495-498 (2008);
- 17. D. Demus, J. Goodby, G.W. Gray, *Handbook of liquid crystals Vol.3*. *High molecular weight liquid crystals*, Wiley-VCN, Weinheim; New York; Chichester; Brisbane; Singapore; Toronto, 1998, p. 532;
- 18. J. Mitchell, G.J.T. Tiddy, L. Aring, T. Bostock, M.P. McDonald, *J. Chem. SOC.*, **79**, 975-1000 (1983);
- A. Klaus, G.J.T. Tiddy, D. Touraud, A.S.G. Steuhler, W. Kunz, *Langmuir*, 26, 22, 16871-16883 (2010);
- 20. L. Mol, B. BergenstAhl, P.M. Claesson, *Langmuir*, 9, 2926-2932 (1993);
- 21. V. Castelletto, I.A. Ansari, I.W. Hamley, *Macromolecules*, **36**, 5, 1694-1700 (2003);
- 22. J. Israelachvili, *Intermolecular and Surface Forces, with Applications to Colloidal and Biological Systems*, Academic Press, London, 1985, p. 251;
- 23. Н.М.Селиванова, В.В. Осипова, М.В.Стрелков, И.Р. Манюров, Ю.Г. Галяметдинов, *Изв. РАН, сер. хим.*, **56**, 1, 56-61 (2007);
- 24. Н.М. Селиванова, М.А. Кузовкова, А.И. Галеева, Ю.Г. Галяметдинов, *Вестник Казанского технологического университета*, **14**, 18, 19-26 (2011).

[©] **Н. М. Селиванова** - к.х.н., доц. КНИТУ, natsel@mail.ru; **О. А. Шихобалова** - магистр КНИТУ, okcana90@gmail.com; **А. Т. Губайдуллин** - д.х.н., в.н.с. ИОФХ им. Арбузова, aidar@iopc.ru; **Ю. Г. Галяметдинов** - д.х.н., проф., зав. каф. физической и коллоидной химии КНИТУ, yugal2002@mail.ru.