В. А. Бабкин, И. Н. Козлов, О. В. Стоянов, Г. Е. Заиков

КВАНТОВО-ХИМИЧЕСКИЙ РАСЧЕТ МОЛЕКУЛЫ 1,2-(3,3'-ДИИНДЕНИЛ)ЭТАНА И 3,3'-ДИИНДЕНИЛА МЕТОДОМ MNDO

Ключевые слова: квантово-химический расчет, метод MNDO, 1,2-(3,3'-диинденил)этан и 3,3'-диинденила, кислотная сила.

Впервые выполнен квантово-химический расчет молекулы 1,2-(3,3'-диинденил)этана и 3,3'-диинденила методом MNDO с оптимизацией геометрии по всем параметрам стандартным градиентным методом. Получено оптимизированное геометрическое и электронное строение этого соединения. Теоретически оценена его кислотная сила (pKa = 32). Установлено, что молекула 1,2-(3,3'-диинденил)этана и 3,3'-диинденила относится к классу очень слабых кислот (pKa>14).

Keywords: quantum chemical calculation, method MNDO, 1,2-(3,3'-diindenil)ethan and 3,3'-diindenil, acid strength.

For the first time it is executed quantum chemical calculation of a molecule of 1,2-(3,3'-diindenil)ethan and 3,3'-diindenil method MNDO with optimization of geometry on all parameters. The optimized geometrical and electronic structure of this connection is received. Acid force of 1,2-(3,3'-diindenil)ethan and 3,3'-diindenil is theoretically appreciated. It is established, than it to relate to a class of very weak H-acids (pKa=+32, where pKa-universal index of acidity).

Введение

Целью настоящей работы является квантовохимический расчет молекулы 1,2-(3,3'диинденил)этана и 3,3'-диинденила [1] методом MNDO с оптимизацией геометрии по всем параметрам стандартным градиентным методом, встроенным в РС GAMESS [2], в приближении изолированной молекулы в газовой фазе и теоретическая оценка его кислотной силы. Для визуального представления модели молекулы использовалась известная программа MacMolPlt [3].

Результаты расчетов

Оптимизированное геометрическое и электронное строение, общая энергия и электронная энергия молекулы 1,2-(3,3'-диинденил)этана и3,3'-диинденила получена методом MNDO и показаны на рис.1-2 и в табл.1-3. Используя известную формулу pKa=42,11-147,18 q_{max}^{H+} [4] (q_{max}^{H+} = +0,07- максимальный заряд на атоме водорода, pKa- универсальный показатель кислотности см. табл. 1-3), которая с успехом используется, например, в работах [5-14], находим значение кислотной силы равное pKa = 32.

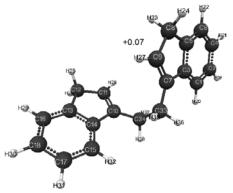


Рис. 1 - Геометрическое и электронное строение молекулы 1,2-(3,3'-диинденил)этана (E_0 = -270659 кДж/моль, E_{23} = -1899175 кДж/моль)

Таблица 1 - Оптимизированные длины связей, валентные углы и заряды на атомах молекулы 1,2-(3,3'-диинденил)этана

1,2-(3,3`-диинденил)этана								
Длины связей	R,A	Валентные углы	Град					
C(2)-C(1)	1,41	C(2)-C(1)-C(3)	119					
C(3)-C(1)	1,40	C(1)-C(2)-C(4)	121					
C(4)-C(2)	1,40	C(5)-C(6)-C(4)	119					
C(4)-C(6)	1,41	C(1)-C(3)-C(5)	120					
C(5)-C(3)	1,44	C(3)-C(5)-C(6)	121					
C(6)-C(5)	1,40	C(1)-C(3)-C(7)	132					
C(7)-C(3)	1,49	C(3)-C(5)-C(8)	109					
C(8)-C(5)	1,52	C(7)-C(9)-C(8)	112					
C(8)-C(9)	1,52	C(3)-C(7)-C(9)	108					
C(9)-C(7)	1,37	C(3)-C(7)-C(10)	128					
C(10)-C(14)	1,49	C(13)-C(14)-C(10)	108					
C(11)- $C(10)$	1,37	C(10)-C(11)-C(12)	112					
C(12)- $C(11)$	1,52	C(11)-C(12)-C(13)	102					
C(13)-C(12)	1,52	C(12)-C(13)-C(14)	109					
C(14)-C(13)	1,44	C(13)-C(14)-C(15)	120					
C(15)-C(14)	1,40	C(12)-C(13)-C(16)	130					
C(16)-C(13)	1,40	C(17)-C(18)-C(16)	121					
C(16)-C(18)	1,41	C(14)-C(15)-C(17)	119					
C(17)-C(15)	1,41	C(15)-C(17)-C(18)	121					
C(18)-C(17)	1,40	C(1)-C(2)-H(19)	119					
H(19)-C(2)	1,09	C(2)-C(1)-H(20)	119					
H(20)-C(1)	1,09	C(2)-C(4)-H(21)	120					
H(21)-C(4)	1,09	C(5)-C(6)-H(22)	121					
H(22)-C(6)	1,09	C(5)-C(8)-H(23)	112					
H(23)-C(8)	1,11	C(5)-C(8)-H(24)	112					
H(24)-C(8)	1,11	C(11)-C(12)-H(25)	112					
H(25)-C(12)	1,11	C(11)-C(12)-H(26)	112					
H(26)-C(12)	1,11	C(7)-C(9)-H(27)	127					
H(27)-C(9)	1,08	C(10)-C(11)-H(28)	127					
H(28)-C(11)	1,08	C(13)-C(16)-H(29)	121					
H(29)-C(16)	1,09	C(17)-C(18)-H(30)	120					
H(30)-C(18)	1,09	C(15)-C(17)-H(31)	119					
H(31)-C(17)	1,09	C(14)-C(15)-H(32)	122					
H(32)-C(15)	1,09	C(3)-C(7)-C(33)	125					
C(33)-C(7)	1,50	C(10)- $C(34)$ - $C(33)$	116					
C(33)- $C(34)$	1,55	C(7)-C(10)-C(34)	231					
C(34)- $C(10)$	1,50	C(7)-C(33)-H(35)	109					
H(35)-C(33)	1,12	C(7)-C(33)-H(36)	109					
H(36)-C(33)	1,11	C(10)-C(34)-H(37)	109					
H(37)-C(34)	1,11	C(10)-C(34)-H(38)	109					
H(38)-C(34)	1,12							

Рис. 2 - Геометрическое и электронное строение молекулы 3,3 '-диинденила

 $(E_0 = -240404 \text{ кДж/моль}, E_{3л} = -1585445 \text{ кДж/моль})$

Таблица 2 - Оптимизированные длины связей, валентные углы и заряды на атомах молекулы 3,3 '- диинденила

Длины связей	R,A	Валентные углы	Град
C(2)-C(1)	1,42	C(2)-C(1)-C(3)	119
C(3)-C(1)	1,40	C(1)-C(2)-C(4)	121
C(4)-C(2)	1,40	C(5)-C(6)-C(4)	119
C(4)-C(6)	1,42	C(1)-C(3)-C(5)	121
C(5)-C(3)	1,45	C(3)-C(5)-C(6)	119
C(6)-C(5)	1,40	C(1)-C(3)-C(7)	133
C(7)-C(3)	1,45	C(8)-C(9)-C(7)	103
C(7)-C(9)	1,55	C(3)-C(5)-C(8)	112
C(8)-C(5)	1,53	C(5)-C(8)-C(9)	103
C(9)-C(8)	1,55	C(10)-C(11)-C(9)	266
C(9)-C(11)	1,57	C(3)-C(7)-C(10)	149
C(10)-C(7)	1,36	C(7)-C(10)-C(11)	94
C(11)-C(10)	1,55	C(10)-C(11)-C(12)	103
C(12)-C(11)	1,55	C(11)-C(12)-C(13)	103
C(13)-C(12)	1,53	C(10)-C(14)-C(13)	106
C(13)-C(14)	1,45	C(7)-C(10)-C(14)	149
C(14)-C(10)	1,45	C(10)-C(14)-C(15)	133
C(15)-C(14)	1,40	C(12)-C(13)-C(16)	128
C(16)-C(13)	1,40	C(17)-C(18)-C(16)	121
C(16)-C(18)	1,42	C(14)-C(15)-C(17)	119
C(17)-C(15)	1,42	C(15)-C(17)-C(18)	121
C(18)-C(17)	1,40	C(1)-C(2)-H(19)	119
H(19)-C(2)	1,09	C(2)-C(1)-H(20)	120
H(20)-C(1)	1,09	C(2)-C(4)-H(21)	120
H(21)-C(4)	1,09	C(5)-C(6)-H(22)	121
H(22)-C(6)	1,09	C(5)-C(8)-H(23)	111
H(23)-C(8)	1,11	C(5)-C(8)-H(24)	112
H(24)-C(8)	1,11	C(11)-C(12)-H(25)	111
H(25)-C(12)	1,11	C(11)-C(12)-H(26)	113
H(26)-C(12)	1,11	C(8)-C(9)-H(27)	110
H(27)-C(9)	1,11	C(10)-C(11)-H(28)	115
H(28)-C(11)	1,11	C(13)-C(16)-H(29)	121
H(29)-C(16)	1,09	C(17)-C(18)-H(30)	120
H(30)-C(18)	1,09	C(15)-C(17)-H(31)	119
H(31)-C(17)	1,09	C(14)-C(15)-H(32)	121
H(32)-C(15)	1,09		

Таблица 3 - Общая энергия (E_0 , кДж/моль), максимальный заряд на атоме водорода (q_{max}^{μ}), универсальный показатель кислотности (рКа) мономеров

	*			
№	Мономер	-E ₀	$q_{\scriptscriptstyle \sf max}^{\scriptscriptstyle H\scriptscriptstyle +}$	рКа
1	1,2-(3,3'-диинденил)	270659	+0,07	32
	этана			
2	3,3 ′-диинденила	240404	+0,07	32

Таким образом, нами впервые выполнен квантово-химический расчет молекулы 1,2-(3,3'-

диинденил) этана и 3,3'-диинденила методом MNDO. Получено оптимизированное геометрическое и электронное строение этого соединения. Теоретически оценена его кислотная сила pKa = 32. Установлено, что 1,2-(3,3'-диинденил)этан и 3,3'-диинденила относится к классу очень слабых Н-кислот (pKa>14).

Литература

- 1. Дж Кеннеди. *Катионная полимеризация олефинов*. Изд-во «Мир»— М., 1978. – 431 с..
- M.W. Shmidt, K.K. Baldrosge, J.A. Elbert, M.S. Gordon, and anothers General Atomic and Molecular Electronic Structure Systems. *J. Comput. Chem.* №14. P. 1347-1363, 1993
- 3. B.M. Bode and M.S. Gordon. MacMolPlt: A Graphical User Interface for GAMESS. *J. Molec. Graphics*. №16. P. 133-138, 1998.
- 4. V.A. Babkin, R.G. Fedunov, K.S. Minsker. and anothers. Oxidation communication, 2002,№1, 25, 21-47.
- 5. В.А. Бабкин, В.В. Трифонов, Г.Е. Заиков, С.Ю. Софьина. Квантово-химический расчет молекулы о-аллилоксистирола методом MNDO. *Вести. Казан. технол. ун-та.* Т. 15, №13, с. 166-167, 2012.
- 6. В.А. Бабкин, В.В. Трифонов, С.Н. Русанова, Г.Е. Заиков. Квантово-химический расчет молекулы паллилоксистирола методом MNDO. *Вестин. Казан. технол. ун-та.* Т. 15, №13, с. 168, 2012.
- 7. В.А. Бабкин, Д.С. Андреев, А.В. Игнатов, О.В. Стоянов, Г.Е. Заиков. Квантово-химическое изучение механизма протонирования 4,4-диметилпентена-1 методом MNDO. *Вестн. Казан. технол. ун-та.* Т. 16, №4, с.23-25, 2013.
- 8. В.А. Бабкин, Д.С. Андреев, О.В. Стоянов, Г.Е. Заиков. Квантово-химический расчет молекулы бутадиена-1,3 и 2-метилбутадиена-1,3 методом MNDO. *Вестин. Казан. технол. ун-та.* Т16, №8, с.21 -25, 2013.
- 9. В.А. Бабкин, Д.С. Андреев, О.В. Стоянов, Г.Е. Заиков. Квантово-химический расчет молекулы пентадиена-1,3 и транс,транс-гексадиена-2,4 методом MNDO. *Вести. Казан. технол. ун-та.* Т16, №8, с.25 -27, 2013г.
- 10. В.А. Бабкин, Д.С. Андреев, О.В. Стоянов, Г.Е. Заиков. квантово-химический расчет молекулы 2-фенилбутадиена-1,3 и 1-фенил-4-метилбутадиена-1,3 методом МNDO. Вести. Казан. технол. ун-та. Т16, №8, с.38-41, 2013.
- 11. В.А. Бабкин, Д.С. Андреев, О.В. Стоянов, Г.Е. Заиков. Квантово-химический расчет молекулы 2,3-диметилбутадиена-1,3, аллоцимена и хлоропрена методом MNDO. Вести. Казан. технол. ун-та. Т16, №8, с.41-43, 2013.
- 12. В.А. Бабкин, Д.С. Андреев, О.В. Стоянов, Г.Е. Заиков Квантово-химический расчет молекулы мирцена и трансгексатриена-1,3,5 методом МNDO. *Вестин. Казан. технол. ун-та.* Т16, №8, с.43 -48, 2013г.
- 13. В.А. Бабкин, Д.С. Андреев, О.В. Стоянов, Г.Е. Заиков. Квантово-химический расчет молекулы цис,транс-гексадиена-2,4 и цис,цис-гексадиена-2,4 методом MNDO. Вести. Казан. технол. ун-та. Т16, №9, с.7-9, 2013.
- 14. В.А. Бабкин, Д.С. Андреев, О.В. Стоянов, Г.Е. Заиков. Квантово-химический расчет молекулы транс-2-метилпентадиена-1,3 и транс-3-метилпентадиена-1,3 методом МNDO. *Вести. Казан. технол. ун-та.* Т16, №9, с.9-11, 2013.

[©] В. А. Бабкин - д-р хим. наук, проф. нач. научн. отдела Себряковского филиала Волгоградского госуд. архитектурностроительного ун-та, Babkin_v.a@mail.ru; И. Н. Козлов – студ. того же вуза; О. В. Стоянов – д-р техн. наук, проф., зав. каф. технологии пластических масс КНИТУ; Г. Е. Заиков - Институт биохимической физики РАН, chembio@sky.chph.ras.ru.