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Within the frame of the self—avoiding random walks statistics (SARWS), the derivation of the internal n—link
(1<<n<<N) distribution of the polymer chain with respect to the chain ends is suggested. The analysis of the obtained
expressions shows, that the structure of the conformational volume of the polymer chain is heterogeneous; the largest
density of the number of links takes place in conformational volumes nearby the chain ends. It can create the effect of
blockage of the active center of the growing macroradical and manifest itself as a linear chain termination. The
equation for the most probable distance between two internal links of the polymer chain was obtained as well. The
polymer chain sections, separated by fixing the internal links, are interactive subsystems. Their total conformational
volume is smaller than the conformational volume of undeformed Flory coil. Therefore, total free energy of the chain
sections conformation equals to free energy of the conformation of deformed (i. e. compressed down to the total volume
of the chain sections) Flory coil.

Knioueswie cnosa: maxpomonexyna, 6Hympennss cés3b, KOHpopmayus, pacnpeoenenue, peuenue.

B pamxax cmamucmuku cayuaiineix oxyocoanuii 6e3 camonepeceuenus (CBBC) npedaazaemcsa v1600 pacnpeoeneHus
snympennel n-ceasu (1<<n<<N) noaumepHou yenu OMHOCUMENbHO ee KOHYOB. AHANU3 NOTYUEHHBIX BbIPANCEHUl
HOKA3bl8aem, Ymo CmMpyKmypa KOHOOPMAYUOHHO20 00beMa NOTUMEPHOU Yenu AGIAeNCs 2emepo2eHHOl; Haubobuiee
KOUYecmeo céazell umeenm Mecmo 6 KOHPOPMAYUOHHOM obbeme 0KOIO0 KOHYO8 yenu. Imo modicem co30ambv dpghexm
OOKUPOBAHUSL AKMUBHO20 YEHMPA PACMYWe20 MAKPOPAOUKAid U NPOAGIsAmMbC 6 6ude JUHEH020 00pblea yenu.
Taxorce ObLIO NOMYUEHO YpasHeHue 05l HAubojee 6epPOIMHO20 PACCMOAHUSL MeHCOY 08YMS BHYMPEHHUMU CEA3AMU
NOMUMEPHOU Yenu. Yuacmku NOIUMEPHOU yenu, pasdeneHHvle QUKCUPOBAHUEM BHYMPEHHUX CBA3€l, AGIAIOMC
UHMEPAKmMueHuiMu noocucmemamu. HMx obwuii KOHGOPMAYUOHHBIN 00beM MeHblule KOHDOPMAYUOHHO20 0bvema
Hedegopmuposannozo kiyoxka Daopu. Taxum obpasom, obwas ce0600HAA dHepaus KOHGOpMayuu y4acmkos yenu
pasHa c80000HOU dHepauu KOHGopMayuu 0ehopmMuposanHo2o (m. e. caicamozo 00 obwe2o odvema y4acmka yenu)

K1yoxa @nopu.
Introduction

In Gaussian random walks statistics, the
mean—square end—to—end distance R for a polymer
chain, as well as mean—square distance between two not
very closely located internal links obey general
dependence[1]:

R=an"? n>>1 (1)
where « is the mean length of the chain link according
to Kuhn[2]; n is the chain length or the length of a given
chain section, expressed by the number of links in it.

Self—avoiding random  walks statistics
(SARWS) determines the conformational radius Ryy of
the undeformed Flory coil as the most probable
end—to—end distance of the polymer chain[3,4]:

Ry, =aN¥? @)

Here N is the total chain length, d is the Euclidian space
dimension.

According to (2), Flory coil is a fractal, i. e. an
object, possessing the property of the scale invariance in
dimensionality space d, = (d +2)/3.

At derivation[3] of (2), however, the
distribution of the internal polymer chain links in its
conformational space remains unknown, therefore, it
can not be indicated in advance that the distances
between the terminal and internal chain links or
between the internal ones obey the same dependence (2)
at the value of NV as the length of the selected section of a
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polymer chain.

Study of the problem of internal polymer chain
links' distribution is based mainly on the analysis [5,6]
of the scale distribution function Pj;(r) of distance r
between two links with ordinal numbers i and J:

AEO=i-ieni-ir) o
Function f(l‘ /|i - j|U): f(X) is usually

written in the form of power or exponential dependence
on the only variable x:

f(x)ng ] atx <<1,
fx) ~ exp{=x’} atx>> 1. @)
Studying the correlations between two

arbitrary points i and j of a polymer chain, Des
Cloizeaux[7] suggested dividing the scale function Py(r)
into three classes, that describe the distribution of
distances between two terminal points of a polymer
chain (P(O)i,-(r) with exponents 6, and J, at i = 1, j = N),
between the initial and internal points (P(l)i,»(r) with
exponents §; and J; at i = 1, 1 <<j << N) and between
two internal points (P(Z)l»j(r) with exponents 6, and J, at
1 <<i << j << N), respectively.

Using the method of the second order
e—expansion within the range x << 1 for the space d = 3,
Des Cloizeaux'” has obtained in particular: 6, = 0,273,
01 = 0,459, 02 = 0,71



To evaluate the exponents 6; and ¢; some other
methods were used as well. Let us present some of the
obtained results: [8]60, = 0,27; [8,9,10]6, = 0,55, 0,61,
0,70; [8,910, = 0,9, 0,67; [8,11]5, = 2,44, 2,5; [8]0, =
2,6; [8]0, = 2,48.

In spite of the spread in exponent values, they
unambiguously indicate (especially when comparing the
values of 6,, &, and 6,), that distribution function Py(r),
retaining their scale universality, quantitatively
significantly depends on whether we consider the
distance between terminal points, a terminal and
internal one or between two internal points of a polymer
chain. Whereas the proposed methods of analysis
establish this fact, they however do not reveal the
reason of the above—mentioned difference. Reference to
strengthening the effects of the volume interaction
between the internal links of a polymer chain can not be
absolutized, since these effects can not be taken into
account at computer simulation of self—avoiding
random walks, but the results of the calculations
according to them give the same estimations of
exponents 6; and J; as the analytic methods that take into
account the volume interaction.

The shortcoming of the proposed approaches is
also the fact that the scale distribution function Py(r) is
approximate and does not enclose the most significant
region of parameter x changing between x << | and x
>> 1, where Py(r) takes on maximal values. Finally, it
should be noted that the role of the length of the second
section of a polymer chain (at evaluating 6, and J, the
length of the second section is extrapolated to o) or the
lengths of its two sections (at evaluating 8, and d5) is
outside of the analysis.

Hence, the suggested approaches do not allow
to solve the problem of the internal links distribution for
a polymer chain completely. In the present work we
propose its analytic solution in terms of SARW strict
statistics, i e. without taking into account of the
so—called volume interaction.

Initial statements

Preliminary let us briefly introduce the main
statements of SARW statistics, that are necessary for the
subsequent analysis™*. The Gaussian random walks in
N steps are described by the density of the Bernoulli
distribution:

1" n!
N.s)=|> ' ’
W3] 11 Gesyraiie s y7a
where 7, is a number of the random walk steps in
i—direction of d—dimensional lattice space with the step
length a, which is equal to the statistical length of Kuhn
link; s, is the number of effective steps in i—direction:

.~ are numbers of positive

N
where 5,7, s,

= T
S;p T8 TSio

and negative steps in i—direction. Numbers of 7 ; steps

are limited by the following correlation:
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St =N- ()

The condition of self-avoidance of a random
walk trajectory on d—dimensional lattice demands the
step not to fall twice into the same cell. From the point
of view of chain link distribution over cells it means
that every cell can not contain more than one chain link.
Chain links are inseparable. They can not be torn off
one from another and placed to cells in random order.
Consequently, the numbering of chain links
corresponding to wandering steps is their significant
distinction. That is why the quantity of different
variants of N distinctive chain links placement in Z
identical cells under the condition that one cell can not
contain more than one chain link is equal to Z!/(Z—N)!

Considering the identity of cells, a priori
probability that the given cell will be filled is equal to
1/Z, and that it will not be filled is (1-1/Z).
Respectively, the probability a(z) that N given cells will
be filled and Z — N cells will be empty, considering both
the above mentioned condition of placement of N
distinctive links in Z identical cells and the quantity of
its realization variants will be determined by the
following expression

w-gZl2](-3]"

Probability density @(N)of the fact that

random walk trajectory is at the same time SARW
statistics trajectory and at given Z, N, n; will get the last
step in one of the two equiprobable cells, which

()

coordinates are set by vectors s = (s;), differentiated
only by the signs of their components s, is equal to

o(N)=w(Z)w(N,s). (8)

Let us find the asymptotic limit (8) assuming Z
>>1, N>>1, n; >> 1 under the condition s; << n;, N <<
Z. Using the approximated Stirling formula In x! = x In
x—x+In (22" for all x >> 1 and expansion /n(1-1/2)
~—1/Z, In(1-N/Z) = —-N/Z, In(1£s/n;) ~ xs;/n; — (s,»/ni)z/Z,
and assuming also N(N — 1) we will obtain[3,4]:

o(N) = exp{-N?/Z - (1/2)3s?/n, }- ©)

Transition to the metric space can be realized by
introduction of the displacement variable

X, =als,|d"?. (10)

and also the parameter 0; — the standard deviation of
Gaussian part of distribution (9):
o’ =a’nd. (11)

Then



2 2/ 2
Si /ni:Xi /Gi , (12)
z=]]Ix/a’ (13)
and for the metric space expression (9) becomes:
a’N? 1 (14)

wo(N) =expi—

gl
HX,- 2 i 0',2
Here HX ; is the volume of conformational ellipsoid
i
with the semiaxes of x; to the surface of which the
states of the chain end belong.

A maximum of a)(N ) at the set values of O;

and N corresponds to the most probable, i. e. equilibrium
state of the polymer chain. From the condition of

a)(N)/axl: 0 at x,;= x. we find semiaxes x of

the equilibrium conformational ellipsoid [3]:

x) =o,(@N?/ [ o, e
i

In the absence of external forces, all directions
of random walks of the chain end are equiprobable, that
allows to write:

n, =N/d,

(15)

(16)

an

The substitution of (17) into (15) makes the
semiaxes of the equilibrium conformational ellipsoid
identical and equal to the undeformed Flory coil radius:

X! ZRNJ. two

1

2 2 2
o =oy=aN.

Let us underline important

circumstances. First, SARW statistics leads to the same
result, i. e. to formula (2), that Flory method, which takes
into account the effect (repulsion) of the volume
interaction  between monomer links in the
self—consistent field theory. However, as it was
explained by De Gennes'®, accuracy of formula (2) in
Flory method is provided by excellent cancellation of
two mistakes: top—heavy value of repulsion energy as a
result of neglecting of correlations and also top—heavy
value of elastic energy, written for ideal polymer chain,
that is in Gaussian statistics. Additionally, one must
note, that formula (2) is only a special case of formula
(15), which represents conformation of polymer chain
in the form of ellipsoid with semiaxes x;° # R, allowing
to consider this conformation as deformed state of Flory
coil.

Second, obtained expression (14) for density of
distribution of the end links of polymer chain is not
only more detailed but also more general than scale
dependencies (4) at 6, and J,,, which are approximately
correct only at the limits x; /R; << 1 and x; /R, >> 1.

Free energy Fy of the equilibrium
conformation is determined by the expression
at X, = X_

Fy=—kTInao(N) (18)
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From here for undeformed Flory coil we have:

Fu; =(1+d/2)kT(Ry, /oy )? - (19)

For the deformed one —

FN = N,f//Iv’

where A, is the repetition factor of Flory coil's volume

(20)

deformation:

A = HX/‘O/Rfd :H/L‘ > @D

where 4; is a repetition factor of linear deformation,

A=x"/R,. (22)
At any deformations the conformational
volume diminishes, therefore in general case A, <1 [3].

Sarw statistics for the internal links of a chain

The internal n—link (I<<n<<N) divides
polymer chain into two sections with the lengths of n
and N—n links, respectively. This situation is illustrated

with high quality in Figure 1.
=

s/

X
R

Fig. 1 - The scheme, explaining the necessity to enter
new conformational volume Z’ at fixing of the
position of the polymer chain internal n—link

Let us assume, as it is shown in Figure 1, that
the most probable position of n—link with respect to the

chain end is the surface of sphere with radius R, and

chain's n—link accidentally appeared at point O ,, on this

sphere. Then with respect to this point N—link of the
chain over N—n steps with the highest probability
should appear on the surface of sphere with radius

Ryp-
As it seen from Figure 1,
Rg +R;\j, n < Rﬁ,. Consequently, fixing of n—link

position diminishes the polymer chain's conformational

can be

volume regardless of where specifically point O, is

situated on the surface of sphere with radius R .

This means that for the analysis of SARW
statistics of the chain's internal links in the lattice space,



a new number of cells Z' < Z needs to be introduced.
Then the probability density of the random walk
trajectory's self—avoiding for the polymer chain with
fixed position of the internal link can be described by
the Bernoulli distribution in the same form (7), but with
a new value of cells number:

@)z 7]

The Gaussian random walks in n and N—n steps
of the first and second chain sections can be described
thereby by the Bernoulli distribution (5), but here in
expressions for the distribution density (0 (n, s) for the
first chain section and @ (N—n, s) for the second one,
respectively, the following conditions of normalization
must be implemented:

27/:”’
dn=N-n

and in place of the factor (1/2)" factors (1/2)"
and (1/2)""" respectively should be used.

(23)

24

(25)

As @(Z') applies to the whole polymer

chain, the distribution densities w(n) and w(N—n) of the
SARW statistics trajectories for the first and second
chain sections can be determined by the following
expressions:

o(n)=(a(Z'))"" o(n,s), (26)

o(N-n)=(a(Z')"""Ne&(N-n,s). (27)

In an asymptotic limit the expressions (26) and
(27) can be written:

ofn) =exp(-aN*/Z ~(Y2)3 s n . @9)

w(N—n)=exp{—(l—a)NZ/Z’—(l/Z)Zsf/nj}' 29

The lengths of every section fractions of the
total chain length are introduced here as:

a=n/N, 1-a=(N-n)/N.
Defining the the
displacement of X; and J; in the form (10) and

(30)

variables of metric

standard deviations O, ; and O)._,; of the Gaussian

n,i
part of distribution (28) and (29) in the form (11),
instead of (28) and (29) we obtain:

w(n)= exp{—aNz/Z'—(]/Z )X /ai,,-}, 31

@N =) =exp{~(1-aN* /2~ (V)L y7 [of,,} (32)

Owing to the normalization (24) and (25) we
have:
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2 o2 =atnd, Y o2, =al(N-n)d. (3)

i

I
The values HX ; and Hy,- are the
i i

volumes of the conformational ellipsoids with the
semiaxes x; and y; of the first and second sections of

the polymer chain, respectively. Hence, as laid down
earlier (13), it is possible to write:

Z'=(1i_[x,+iHy,)/ad.

Entering the volume fractions of the proper
conformational ellipsoids

o=l Tl Tl
o= T[T )

we obtain:

(34)

(35)

o(n) = exp{—adaﬁNz/Hx,. —(]/Z)Zx,?/o—;i}, (36)
olN-n)=exp{e (1-a)0-N|T 1 -(42)31 | Frai}37)

These expressions are sought densities of
distribution of internal links of the chain from its ends.
Parameter § will be determined later.

The most probable states of the polymer chain

sections meet the conditions O@(N)/OX; =0 at
x;=X., 0w(N—-n)/0y,=0 at y,=y; . Using them
and assuming that values £ and 1-/ do not depend

on specific realizations of x; and y;, i e. these are

functions of » and N—n only, we find

X =0, (@ apN’/ Lo, e,
i

yi = ON-n (& (1-a)(1-pIN° / HO-Nm,i F @2 39)

In the absence of external forces, all directions
of random walks are equiprobable, therefore according
to (31) it is possible to write:

(3%)

2

ol =c;=an=oga, (40)

O-I%I—n,i = Gl%l—n = aZ(N - n) = o-I%I (1_ 0(). (41)
Using (40) and (41) in (38) and (39), we will

obtain expressions for the equilibrium conformational
radii of both polymer chain sections:

R = RNfaZ/ (d+2)ﬂ]/ (d+2)’ (42)
R = Rys(1=a)* (1= p)V (9 (43)

The conformational volumes here are equal to



HX,- =RY, H Y, = R;\’Ln, therefore expression (35)

may be rewritten in the form

B/ (1-pB)=R; /Ry,

From (42) — (44) it follows:

(44

L=a’ /[ad +(1—a)d],
1-f=(1-a)° /[ad +(1—a)°’]. (45)

Excepting [ from (42) and (43), we get

finally
R, =Ry;a /[ad +(1- a)d]]/ e, (46)
Ry, =Ry, (1-a)/|a’ +(1-a)'] . @)

Eqns. (46) and (47) together determine the
most probable, that is the equilibrium distances of the
internal link from the polymer chain ends.

As one can see, although between R, and

Ry_h a correlation

R,/ Ry, =a/(1—a) is observed, each of these
values depends by complicated way not only on its own
section length but also on the length of another one.

Formulas (46) and (47) are correct at
d <45 including at d = 1. For one—dimensional
space from (46) and (47) follows physically expected
result R, =an, R, ,=a(N-n).

simple

Structure of the polymer chain conformational
space

From eqns. (46) and (47) follows that
R,/ Ry; =a and R, ,/Ry;21-a, and
signs of equality are achieved only on the chain ends, i.
e. at =1 and a =0, respectively. This gives
evidence to heterogeneity of the polymer chain

conformational volume. In addition, because of
interconnection between R, and R,_,, both chain
sections are not fractals. Let us comment both

circumstances, confronting the values R, and R, ,
from (46) and (47) with those values of Rn,f and

R\_p ¢ » which these chain sections would have, if they

were free and submitted to fractal correlation of the type

)

Rn‘f = an¥ @+2) _ RN,,a?’/ (d+2)’
Ry_,;=a(N - n)¥ (d+2) _ Ry (1~ a)! (d+2)

(43)
(49)

From comparison of (46) — (49) it follows:

R, Ry =d*V?d /o ¢ (1-af'] ™, (50)
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Run] Runs =(1-)*¥ @ [lof +(1-af [ “? (51

Dependencies (50), (51) are illustrated on
Figure 2 for the option of d = 3.

—B/R

noonf

----B_ /R

N-n' N f

1,24

1,14
1,0
0,94
0,84
0,74
0,6
- 0,54
0,44

Rn/Rn f! RN-n/RN-n,f

0,31

0,24

0,1

T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10
o

Fig. 2 - Ratios R,/ R,; and R, ,/ Ry_,;

calculated on the eqns. (50) and (51) depending on o
and 1-a

As one can see, only in the area @ >0.5 and

correspondingly 1-@ >0,5, ratios R,/ R,; and
RN_n/ RN—n,f’ though are more than 1, but

insignificantly. It allows to consider of these chain
sections as the fractals objects with a small error and to
describe them by fractal dependences (48) and (49).
However, for short chain sections, i. e. at a <0,5 or
1-a <0,5 ratios Rn/ Rn,f and RN_n/ RN—n,f
become less than 1 and sharply diminish towards the
chain ends, which indicates the compression of the
conformational volume space nearby the ends of a
chain.

Yet even more evidently heterogeneity of the
structure of polymer chain's conformational volume
becomes apparent at the analysis of volume density o,
i. e. the numbers of links in the unit of conformational
volume for given chain section. Let us be limited to

considering only the first chain section # in length, for
which

p,=n/R’. (52)

Using (46), we get
d/ (d+2) -
0,/ pN:[ad—i-(l—a)d] /a®t, (53)

where py =N/ Ry, is an average links' density in

conformational volume of the whole polymer chain.
The correlation between local and average
density of the chain links is illustrated on Figure 3 at d

= 3. Evidently, ratio p, / Py 1n the range of a <0.2
at a—>0
a=0.01 achieves the value of 10°order. As the

sharply increases, and for example at



dependence of the ratio Py , / Py 1s similar, but

asymmetric, it can be concluded that the conformational
volumes near the chain ends are strongly compressed,
so that the density of links in them considerably exceeds
the average one over the conformational volume of the
whole chain. With some caution one can suppose that
the conformational volumes near the chain ends have a
globular structure.

100+ — Bp,/p,
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Fig. 3 - Ratio between local density of polymer chain
link p, and average one py depending on a
calculated on (53)

To support this point, we propose also
considerations based on experimental research of
dymethacrylates postpolymerization kinetics, i. e. dark,
after turning off UV irradiation, process of
polymerization”. It was found, that the chain
termination is linear, and its kinetics submits to the law
of stretched Kohlrausch exponent:

w(t)=gexp{-t/t,} . (54)

Here g and 0 < » < 1 are constants; ¢, is

characteristic time of linear chain termination.

A theoretical derivation'® was based on the
idea, that linear chain termination is the act of
«self-burial» of macroradical's active center and
manifests itself as the act of chain propagation, leading
into a trap. Taking into account the fractal properties of
polymer chain and assuming that a set of traps in its
conformational volume is a fractal as well, we obtain
the expression similar to (54):

w(t)=gexpl=t/ t,(pn/po)f " . 59

where 7, is characteristic time of chain propagation

act, p,, and P, are monomer and traps concentrations

in the macroradical's conformational volume,
respectively.
According to the derivation of expression (55)

E=d, /(d, +d, -d), (56)

where d, =(d+2)/ 3 and d, are fractal

dimensions of the conformational volume of
macroradical and a set of traps in it. From experimental

data the value of ¥ =1/& = 0.6, so we can accept

&= df. Then for the dimension of the traps set fractal
the expression (57) follows from (56):

d+d 2d+1
2 3

which not only satisfactorily coincides with

d, = (57)

experimental value of dL at d = 3, but also presents
physically justified value of d , =1lat d=1.

Correlation (57) shows that d, <d, <d.
Therefore, in the reaction zone of growing
macroradical, there are both «strange» traps formed by
polymer chains, external for given macroradical, with
fractal dimension close to d and «own» ones with
fractal dimension of polymer chain d, = (d +2)/3.

This derivation in[12] is based only on kinetic
researches of dymethacrylates postpolyme-rization, but,
apparently, it coordinates well with the results of
present work, according to which «owny» traps for a
growing macroradical are caused by high density of
links in the conformational volumes near the polymer
chain ends, that can screen or even block up
macroradical active center.

Free energy of conformation of polymer chain
sections

Let us determine free energies F, and Fy_, of
the conformation of polymer chain sections, separated
by fixing of internal n—link, on type (18) by
expressions:

F,=-kTlno(n)  atx=x’, (58)

F, ., =-kTIno(N - n) aty; =y’ (59)

For the equilibrium state in the absence of
external forces, 7. e. at all X,p =R, and y,.° =Ry ,»
using (36), (37), (45)—(47) in (58) and (59), we get

F,=Fy, of [ad +(1-a) ]2/(0”2) , (60)

Fo,=Fy,0-a)]a’ +@-af . o

From here it follows:

/(d+2)
F +F,, = FN,,/[ad +(1- a)d]z . (62)
Hence, F, + Fy , =F ;. Itis related to the

fact that two chain sections are thermodynamic
subsystems, which interact with each other. Thus, fixing



the position of a polymer chain internal link increases
its negative entropy and positive free energy of
conformation due to diminishment of the polymer chain

conformational volume. Therefore the sum F, + F,
of free energies of the chain sections conformation must
be compared not to [’ N representing free energy of
undeformed Flory coil conformation with the volume of

RY, ., whereas for free energy of conformation F,, of

the Flory coil deformed to the volume RY + RJ_ .

determined by the expression (20).
As the multiple (repetition factor) of the

volume deformation A, here is equal to

by =R R IR, =l +(1-af [ @
we have identically
F,+Fy_, = N,f/ﬂv-

It is now possible to accomplish the reverse
transition and write the expression

()N —n)* = o(N).

(64)

(65)
which was not obvious in the beginning.

The most probable distance between two
internal links of a polymer chain

If two internal links of a chain are selected
according to the condition 1 << k << n << N, the
polymer chain is divided into three sections with the
lengths of k&, n—k and N—n, to which the fractions of the

total chain length ¢, =k/N, a, , = (n—k)/N
and o, _, = (N —n)/N correspond.

Let us suggest that f =13 are numbers of

sections with quantities of links k, n — k and N — n, to
which fractions a; =k /N, o, = (n—k) / N and a3 = (n—k)
/ N from general number N of links in a chain are
corresponded.

Extending the above—mentioned procedure of
analysis of two chain sections to three sections, we get
the general expression for the distribution density of the
end of the given section regarding to its beginning:

a)(./) = eXp{_ad alesz/ijiz _(J/Z)Zinz/o_jzi} ’

Jj=13,i=1d. (66)
Here f; is a fraction of conformational volume of the
given section in the sum of conformational volumes of
all sections; x; , [=21d
conformational ellipsoid j with center in the beginning
of the given section. The surfaces of this section involve
the states of its end.

are semiaxes of
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The square deviations o;; of Gaussian part of
distribution (66) obey the normalization conditions of
the form:

> ol =a’a;Nd. (67)
i
At equiprobability of walks in all directions of
d—dimensional space we have:
o2 =0% =a’a,N (68)
j Jjo T
In this case the most probable distance between

the beginning and the end of the chain in the given
section will be equal to:

Ry o,
R. = NI (69)
j d \1/d+2) °
Z(a/ ) (d+2)
j
and for B, the following expression will be
correct:

(70)

According to (69) the value of R; depends not
only on the length of the given chain section but also on
where this section has been chosen. Thus, we can note
again that selected three sections of polymer chain are
not independent, but are interactive subsystems.
Therefore, total free energy of conformation of the
chain three sections exceeds free energy of
conformation of undeformed Flory coil. But the
following equality holds identically:

Fk+Fn—k+FN—k: N,f/ﬁ'v’ (71)

where the multiplicity of Flory coil's volume
deformation at the division of the chain into three
sections is determined by the expression:

4, =(RY +R%, + R, )R, . (72)

Conclusions

Fixation of the position of polymer chain
internal links separates its conformational volume into
interacting subsystems. Their total conformational
volume is smaller, and free energy is larger than the
conformational volume and free energy of Flory coil,
respectively. From expressions, which determine the
probable distance between the polymer chain's internal
link and its ends, as well as between any internal links,
it follows that the structure of the polymer chain
conformational volume is heterogeneous: the largest
density of the number of links is observed near the
chain ends. This can result in blockage of the
macroradical's active centre and appear as a linear chain
termination.
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