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Within the frame of the self−avoiding random walks statistics (SARWS), the derivation of the internal n−link 
(1<<n<<N) distribution of the polymer chain with respect to the chain ends is suggested. The analysis of the obtained 
expressions shows, that the structure of the conformational volume of the polymer chain is heterogeneous; the largest 
density of the number of links takes place in conformational volumes nearby the chain ends. It can create the effect of 
blockage of the active center of the growing macroradical and manifest itself as a linear chain termination. The 
equation for the most probable distance between two internal links of the polymer chain was obtained as well. The 
polymer chain sections, separated by fixing the internal links, are interactive subsystems. Their total conformational 
volume is smaller than the conformational volume of undeformed Flory coil. Therefore, total free energy of the chain 
sections conformation equals to free energy of the conformation of deformed (i. e. compressed down to the total volume 
of the chain sections) Flory coil. 
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В рамках статистики случайных блужданий без самопересечения (СББС) предлагается вывод распределения 
внутренней n-связи (1<<n<<N) полимерной цепи относительно ее концов. Анализ полученных выражений 
показывает, что структура конформационного объема полимерной цепи является гетерогенной; наибольшее 
количество связей имеет место в конформационном объеме около концов цепи. Это может создать эффект 
блокирования активного центра растущего макрорадикала и проявляться в виде линейного обрыва цепи. 
Также было получено уравнение для наиболее вероятного расстояния между двумя внутренними связями 
полимерной цепи. Участки полимерной цепи, разделенные фиксированием внутренних связей, являются 
интерактивными подсистемами. Их общий конформационный объем меньше конформационного объема 
недеформированного клубка Флори. Таким образом, общая свободная энергия конформации участков цепи 
равна свободной энергии конформации деформированного (т. е. сжатого до общего объема участка цепи) 
клубка Флори. 

 
Introduction 

 
In Gaussian random walks statistics, the 

mean−square end−to−end distance R for a polymer 
chain, as well as mean−square distance between two not 
very closely located internal links obey general 
dependence[1]: 

 
21anR    n >> 1  (1) 

where a is the mean length of the chain link according 
to Kuhn[2]; n is the chain length or the length of a given 
chain section, expressed by the number of links in it. 

Self−avoiding random walks statistics 
(SARWS) determines the conformational radius RN,f  of 
the undeformed Flory coil as the most probable 
end−to−end distance of the polymer chain[3,4]: 

 23  d
f,N aNR    (2) 

Here N is the total chain length, d is the Euclidian space 
dimension. 

According to (2), Flory coil is a fractal, i. e. an 
object, possessing the property of the scale invariance in 

dimensionality space 32)d(df  . 

At derivation[3] of (2), however, the 
distribution of the internal polymer chain links in its 
conformational space remains unknown, therefore, it 
can not be indicated in advance that the distances 
between the terminal and internal chain links or 
between the internal ones obey the same dependence (2) 
at the value of N as the length of the selected section of a 

polymer chain. 
Study of the problem of internal polymer chain 

links' distribution is based mainly on the analysis [5,6] 
of the scale distribution function Pij(r) of distance r 
between two links with ordinal numbers i and j: 

 

   
ji/rfjirP

d

ij  
  (3) 

Function    xfji/rf  
 is usually 

written in the form of power or exponential dependence 
on the only variable x: 
 
f(x) ~ xθ   at x << 1, 
f(x) ~ exp{-xδ}  at x >> 1.              (4) 

 
Studying the correlations between two 

arbitrary points i and j of a polymer chain, Des 
Cloizeaux[7] suggested dividing the scale function Pij(r) 
into three classes, that describe the distribution of 
distances between two terminal points of a polymer 
chain (P(о)

ij(r) with exponents θо and δо at i = 1, j = N), 
between the initial and internal points (P(1)

ij(r) with 
exponents θ1 and δ1 at i = 1, 1 << j << N) and between 
two internal points (P(2)

ij(r) with exponents θ2 and δ2 at 
1 << i << j << N), respectively. 

Using the method of the second order 
ε−expansion within the range x << 1 for the space d = 3, 
Des Cloizeaux[7] has obtained in particular: θо = 0,273, 
θ1 = 0,459, θ2 = 0,71. 
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To evaluate the exponents θi and δi some other 
methods were used as well. Let us present some of the 
obtained results: [8]θо = 0,27; [8,9,10]θ1 = 0,55, 0,61, 
0,70; [8,9]θ2 = 0,9, 0,67; [8,11]δо = 2,44, 2,5; [8]δ1 = 
2,6; [8]δ2 = 2,48. 

In spite of the spread in exponent values, they 
unambiguously indicate (especially when comparing the 
values of θо, θ1 and θ2), that distribution function Pij(r), 
retaining their scale universality, quantitatively 
significantly depends on whether we consider the 
distance between terminal points, a terminal and 
internal one or between two internal points of a polymer 
chain. Whereas the proposed methods of analysis 
establish this fact, they however do not reveal the 
reason of the above−mentioned difference. Reference to 
strengthening the effects of the volume interaction 
between the internal links of a polymer chain can not be 
absolutized, since these effects can not be taken into 
account at computer simulation of self−avoiding 
random walks, but the results of the calculations 
according to them give the same estimations of 
exponents θi and δi as the analytic methods that take into 
account the volume interaction. 

The shortcoming of the proposed approaches is 
also the fact that the scale distribution function Pij(r) is 
approximate and does not enclose the most significant 
region of parameter x changing between x << 1 and x 
>> 1, where Pij(r) takes on maximal values. Finally, it 
should be noted that the role of the length of the second 
section of a polymer chain (at evaluating θ1 and δ1 the 
length of the second section is extrapolated to ∞) or the 
lengths of its two sections (at evaluating θ2 and δ2) is 
outside of the analysis. 

Hence, the suggested approaches do not allow 
to solve the problem of the internal links distribution for 
a polymer chain completely. In the present work we 
propose its analytic solution in terms of SARW strict 
statistics, i. e. without taking into account of the 
so−called volume interaction. 
 

Initial statements 
 

Preliminary let us briefly introduce the main 
statements of SARW statistics, that are necessary for the 
subsequent analysis[3,4]. The Gaussian random walks in 
N steps are described by the density of the Bernoulli 
distribution: 
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where n i  is a number of the random walk steps in 

i−direction of d−dimensional lattice space with the step 
length a, which is equal to the statistical length of Kuhn 

link; is  is the number of effective steps in i−direction: 

s i  = s i
+−s i

−, where s i
+, s i

− are numbers of positive 

and negative steps in i−direction. Numbers of n i  steps 

are limited by the following correlation: 
 

∑
i

i Nn  .    (6) 

The condition of self-avoidance of a random 
walk trajectory on d−dimensional lattice demands the 
step not to fall twice into the same cell. From the point 
of view of chain link distribution over cells it means 
that every cell can not contain more than one chain link. 
Chain links are inseparable. They can not be torn off 
one from another and placed to cells in random order. 
Consequently, the numbering of chain links 
corresponding to wandering steps is their significant 
distinction. That is why the quantity of different 
variants of N distinctive chain links placement in Z 
identical cells under the condition that one cell can not 
contain more than one chain link is equal to Z!/(Z−N)! 

Considering the identity of cells, a priori 
probability that the given cell will be filled is equal to 
1/Z, and that it will not be filled is (1−1/Z). 
Respectively, the probability (z) that N given cells will 
be filled and Z – N cells will be empty, considering both 
the above mentioned condition of placement of N 
distinctive links in Z identical cells and the quantity of 
its realization variants will be determined by the 
following expression 
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Probability density )N( of the fact that 

random walk trajectory is at the same time SARW 
statistics trajectory and at given Z, N, ni will get the last 
step in one of the two equiprobable cells, which 

coordinates are set by vectors s = (s i ), differentiated 

only by the signs of their components si, is equal to 
 

)s,N()Z()N(   .  (8) 

 
Let us find the asymptotic limit (8) assuming Z 

>> 1, N >> 1, ni >> 1 under the condition si << ni, N << 
Z. Using the approximated Stirling formula ln x!  x ln 
x – x + ln (2)1/2 for all x >> 1 and expansion ln(1–1/Z) 
 −1/Z, ln(1–N/Z)  –N/Z, ln(1si/ni)  si/ni – (si/ni)

2/2, 
and assuming also N(N – 1) we will obtain[3,4]: 
 


i

ii }n/s)/(Z/Nexp{)N( 22 21 .        (9) 

 
Transition to the metric space can be realized by 

introduction of the displacement variable 
 

21/
ii dsax  .    (10) 

 

and also the parameter i  − the standard deviation of 

Gaussian part of distribution (9): 
 

dna ii
22  .    (11) 

 
Then 
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∏
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d
i axZ      (13) 

and for the metric space expression (9) becomes: 
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Here ∏
i

ix  is the volume of conformational ellipsoid 

with the semiaxes of xi, to the surface of which the 
states of the chain end belong. 

A maximum of  N  at the set values of i  

and N corresponds to the most probable, i. e. equilibrium 
state of the polymer chain. From the condition of 

 N / x i = 0 at x i = x 0
i  we find semiaxes x 0

i  of 

the equilibrium conformational ellipsoid [3]: 
 

)d(

i
i

d
ii )Na(x 2120  ∏ .  (15) 

In the absence of external forces, all directions 
of random walks of the chain end are equiprobable, that 
allows to write: 
 

dNni  ,    (16) 
 

NaNi
222   .   (17) 

 

The substitution of (17) into (15) makes the 
semiaxes of the equilibrium conformational ellipsoid 
identical and equal to the undeformed Flory coil radius: 

f,Ni Rx 0 . Let us underline two important 

circumstances. First, SARW statistics leads to the same 
result, i. e. to formula (2), that Flory method, which takes 
into account the effect (repulsion) of the volume 
interaction between monomer links in the 
self−consistent field theory. However, as it was 
explained by De Gennes[6], accuracy of formula (2) in 
Flory method is provided by excellent cancellation of 
two mistakes: top−heavy value of repulsion energy as a 
result of neglecting of correlations and also top−heavy 
value of elastic energy, written for ideal polymer chain, 
that is in Gaussian statistics. Additionally, one must 
note, that formula (2) is only a special case of formula 
(15), which represents conformation of polymer chain 
in the form of ellipsoid with semiaxes xi

o ≠ Rf , allowing 
to consider this conformation as deformed state of Flory 
coil. 

Second, obtained expression (14) for density of 
distribution of the end links of polymer chain is not 
only more detailed but also more general than scale 
dependencies (4) at θo and δo, which are approximately 
correct only at the limits xi / Ri << 1 and xi  / Rf  >> 1. 

Free energy FN of the equilibrium 
conformation is determined by the expression 
 

)N(lnkTFN   at 0
ii xx   (18) 

 

From here for undeformed Flory coil we have: 
 

221 )R(kT)d(F Nf,Nf,N  . (19) 

For the deformed one – 
 

vf,NN FF  ,   (20) 

where v  is the repetition factor of Flory coil's volume 

deformation: 
 

∏∏
i

i
i

d
fiv Rx   0 ,  (21) 

where λi  is a repetition factor of linear deformation, 
 

f
o
ii R/x .    (22) 

At any deformations the conformational 
volume diminishes, therefore in general case 1≤v [3]. 

 
Sarw statistics for the internal links of a chain 

 
The internal n−link (1<<n<<N) divides 

polymer chain into two sections with the lengths of n 
and N−n links, respectively. This situation is illustrated 
with high quality in Figure 1. 

 

Fig. 1 - The scheme, explaining the necessity to enter 
new conformational volume Z’ at fixing of the 
position of the polymer chain internal n−link 
 

Let us assume, as it is shown in Figure 1, that 
the most probable position of n−link with respect to the 

chain end is the surface of sphere with radius R n  and 

chain's n−link accidentally appeared at point O n  on this 

sphere. Then with respect to this point N−link of the 
chain over N−n steps with the highest probability 
should appear on the surface of sphere with radius 

R nN . 

As it can be seen from Figure 1, 
d
N

d
nN

d
n RRR  . Consequently, fixing of n−link 

position diminishes the polymer chain's conformational 

volume regardless of where specifically point O n  is 

situated on the surface of sphere with radius R n . 

This means that for the analysis of SARW 
statistics of the chain's internal links in the lattice space, 
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a new number of cells Z' < Z needs to be introduced. 
Then the probability density of the random walk 
trajectory's self−avoiding for the polymer chain with 
fixed position of the internal link can be described by 
the Bernoulli distribution in the same form (7), but with 
a new value of cells number: 
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The Gaussian random walks in n and N−n steps 

of the first and second chain sections can be described 
thereby by the Bernoulli distribution (5), but here in 
expressions for the distribution density  (n, s) for the 
first chain section and  (N−n, s) for the second one, 
respectively, the following conditions of normalization 
must be implemented: 
 

∑
i

i nn  ,       (24) 

 
i

i nNn        (25) 

and in place of the factor (1/2)N factors (1/2)n 
and (1/2)N−n respectively should be used. 

As )Z(   applies to the whole polymer 

chain, the distribution densities ω(n) and ω(N−n) of the 
SARW statistics trajectories for the first and second 
chain sections can be determined by the following 
expressions: 
 

)s,n())Z(()n( Nn   ,      (26) 

 

)s,nN())Z(()nN( N)nN(    .     (27) 

 
In an asymptotic limit the expressions (26) and 

(27) can be written: 
 

}ns)(ZNexp{)n(
i

ii 22 21 ,       (28) 

}ns)(ZN)(exp{)nN(
j

jj 22 211  .      (29) 

The lengths of every section fractions of the 
total chain length are introduced here as: 
 

Nn , N)nN( 1 .       (30) 

Defining the variables of the metric 

displacement of ix  and iy  in the form (10) and 

standard deviations i,n  and i,nN  of the Gaussian 

part of distribution (28) and (29) in the form (11), 
instead of (28) and (29) we obtain: 
 

}x)(ZNexp{)n( i,n
i

i
222 21   ,    (31) 

}y)(ZN)(exp{)nN( i,nN
i

i
222 211   .   (32) 

Owing to the normalization (24) and (25) we 
have: 

 

∑
i

i,n nda22  ,   
i

i,nN dnNa22 .     (33) 

The values ∏
i

ix  and ∏
i

iy  are the 

volumes of the conformational ellipsoids with the 

semiaxes x i  and y i  of the first and second sections of 

the polymer chain, respectively. Hence, as laid down 
earlier (13), it is possible to write: 

 
d

i
i

i
i a)yx(Z ∏∏  .  (34) 

Entering the volume fractions of the proper 
conformational ellipsoids 
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we obtain: 
 

}x)(xNaexp{)n( i,n
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i
d 222 2111    (37) 

These expressions are sought densities of 
distribution of internal links of the chain from its ends. 
Parameter β will be determined later. 

The most probable states of the polymer chain 

sections meet the conditions ix)n(  =0 at 

x o
ii x , )nN(  / iy =0 at y i =y oi . Using them 

and assuming that values   and 1−  do not depend 

on specific realizations of x i  and y i , i. e. these are 

functions of n and N−n only, we find 
 

)d(

i
i,n

d
i,ni )Na(x 2120  ∏ ,           (38) 

 
 

i

)d(
i,nN

d
i,nNi )/N))((a(y 2120 11  (39) 

In the absence of external forces, all directions 
of random walks are equiprobable, therefore according 
to (31) it is possible to write: 
 

 2222
Nni,n na  ,  (40) 

)()nN(a NnNi,nN    12222 .    (41) 

 
Using (40) and (41) in (38) and (39), we will 

obtain expressions for the equilibrium conformational 
radii of both polymer chain sections: 
 

)d()d(
f,Nn RR 2122   ,        (42) 

)d()d(
f,NnN )()(RR 2122 11 

   .     (43) 

 
The conformational volumes here are equal to 
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∏
i

d
ni ,Rx    

i

d
nNi Ry , therefore expression (35) 

may be rewritten in the form 
d
nN

d
n R/R)(   1   (44) 

 
From (42) − (44) it follows: 

 

 ddd )(/   1 ,

 ddd )(/)(   111 . (45) 

 
Excepting   from (42) and (43), we get 

finally 
 

  )d(dd
f,Nn )(/RR

21
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Eqns. (46) and (47) together determine the 

most probable, that is the equilibrium distances of the 
internal link from the polymer chain ends. 

As one can see, although between R n  and 

R nN  a simple correlation 

)/(RR nNn   1  is observed, each of these 

values depends by complicated way not only on its own 
section length but also on the length of another one. 

Formulas (46) and (47) are correct at 
4≤d [2], including at d = 1. For one−dimensional 

space from (46) and (47) follows physically expected 

result anRn  , )nN(aR nN  . 

 
Structure of the polymer chain conformational 

space 
 

From eqns. (46) and (47) follows that 

≥f,Nn RR  and  1f,NnN R/R , and 

signs of equality are achieved only on the chain ends, i. 
e. at 1=α  and 0=α , respectively. This gives 
evidence to heterogeneity of the polymer chain 
conformational volume. In addition, because of 

interconnection between nR  and nNR  , both chain 

sections are not fractals. Let us comment both 

circumstances, confronting the values nR  and nNR   

from (46) and (47) with those values of f,nR  and 

f,nNR  , which these chain sections would have, if they 

were free and submitted to fractal correlation of the type 
(2): 
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d
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From comparison of (46) − (49) it follows: 
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Dependencies (50), (51) are illustrated on 
Figure 2 for the option of d = 3. 
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Fig. 2 - Ratios f,nn RR  and f,nNnN RR   

calculated on the eqns. (50) and (51) depending on  
and 1− 

 
As one can see, only in the area α >0.5 and 

correspondingly 1−α >0,5, ratios f,nn RR  and 

f,nNnN RR  , though are more than 1, but 

insignificantly. It allows to consider of these chain 
sections as the fractals objects with a small error and to 
describe them by fractal dependences (48) and (49). 
However, for short chain sections, i. e. at α <0,5 or 

1−α <0,5 ratios f,nn RR  and f,nNnN RR   

become less than 1 and sharply diminish towards the 
chain ends, which indicates the compression of the 
conformational volume space nearby the ends of a 
chain. 

Yet even more evidently heterogeneity of the 
structure of polymer chain's conformational volume 
becomes apparent at the analysis of volume density  , 

i. e. the numbers of links in the unit of conformational 
volume for given chain section. Let us be limited to 
considering only the first chain section n in length, for 
which 
 

d
nn R/n .        (52) 

 
Using (46), we get 

  12
1 
 d)d(ddd

Nn /)(  ,   (53) 

where d
f,NN R/N  is an average links' density in 

conformational volume of the whole polymer chain. 
The correlation between local and average 

density of the chain links is illustrated on Figure 3 at d 

= 3. Evidently, ratio Nn   in the range of α <0.2 

at 0→α  sharply increases, and for example at 

α =0.01 achieves the value of 10 4 order. As the 
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dependence of the ratio NnN   is similar, but 

asymmetric, it can be concluded that the conformational 
volumes near the chain ends are strongly compressed, 
so that the density of links in them considerably exceeds 
the average one over the conformational volume of the 
whole chain. With some caution one can suppose that 
the conformational volumes near the chain ends have a 
globular structure. 
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Fig. 3 - Ratio between local density of polymer chain 
link ρn and average one ρN  depending on  
calculated on (53) 
 

To support this point, we propose also 
considerations based on experimental research of 
dymethacrylates postpolymerization kinetics, i. e. dark, 
after turning off UV irradiation, process of 
polymerization[4]. It was found, that the chain 
termination is linear, and its kinetics submits to the law 
of stretched Kohlrausch exponent: 
 

  0t/texpg)t(  .     (54) 

 

Here g and 0 <     1 are constants; t 0  is 

characteristic time of linear chain termination. 
A theoretical derivation[12] was based on the 

idea, that linear chain termination is the act of 
«self−burial» of macroradical's active center and 
manifests itself as the act of chain propagation, leading 
into a trap. Taking into account the fractal properties of 
polymer chain and assuming that a set of traps in its 
conformational volume is a fractal as well, we obtain 
the expression similar to (54): 

 

  
/

mp )/(texpg)t(
1

0 ,      (55) 

 

where p  is characteristic time of chain propagation 

act, m  and 0  are monomer and traps concentrations 

in the macroradical's conformational volume, 
respectively. 

According to the derivation of expression (55) 
 

 ddd/d Lff  ,   (56) 

 

where 32)d(df   and Ld  are fractal 

dimensions of the conformational volume of 
macroradical and a set of traps in it. From experimental 

data the value of 601 .  , so we can accept 

fd . Then for the dimension of the traps set fractal 

the expression (57) follows from (56): 
 

3

12

2







ddd
d f
L

,   (57) 

which not only satisfactorily coincides with 

experimental value of Ld  at d = 3, but also presents 

physically justified value of 1Ld  at 1d . 

Correlation (57) shows that ddd Lf  . 

Therefore, in the reaction zone of growing 
macroradical, there are both «strange» traps formed by 
polymer chains, external for given macroradical, with 
fractal dimension close to d and «own» ones with 

fractal dimension of polymer chain   32 ddf . 

This derivation in[12] is based only on kinetic 
researches of dymethacrylates postpolyme-rization, but, 
apparently, it coordinates well with the results of 
present work, according to which «own» traps for a 
growing macroradical are caused by high density of 
links in the conformational volumes near the polymer 
chain ends, that can screen or even block up 
macroradical active center. 

Free energy of conformation of polymer chain 
sections 

 
Let us determine free energies Fn and FN−n of 

the conformation of polymer chain sections, separated 
by fixing of internal n−link, on type (18) by 
expressions: 
 

 nlnkTFn   at xi = xi
o, (58) 

 

 nNlnkTF nN    at yj = yj
o.  (59) 

 
For the equilibrium state in the absence of 

external forces, i. e. at all ni Rx 0  and nNi Ry 0 , 

using (36), (37), (45)−(47) in (58) and (59), we get 
 

    22
1




ddd
f,Nn FF  ,           (60) 

 

      22
11



 
ddd

f,NnN FF  .     (61) 

 
From here it follows: 

 

    22
1



 
ddd

f,NnNn FFF  .         (62) 

Hence, f,NnNn FFF ≥ . It is related to the 

fact that two chain sections are thermodynamic 
subsystems, which interact with each other. Thus, fixing 
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the position of a polymer chain internal link increases 
its negative entropy and positive free energy of 
conformation due to diminishment of the polymer chain 

conformational volume. Therefore the sum nNn FF   

of free energies of the chain sections conformation must 

be compared not to fNF , , representing free energy of 

undeformed Flory coil conformation with the volume of 
d
f,NR , whereas for free energy of conformation NF  of 

the Flory coil deformed to the volume d
nN

d
n RR  , 

determined by the expression (20).  
As the multiple (repetition factor) of the 

volume deformation Vλ  here is equal to 

      22
1



 
dddd

f,N
d
nN

d
nV RRR   (63) 

 
we have identically 

 

Vf,NnNn FFF   .   (64) 

 
It is now possible to accomplish the reverse 

transition and write the expression 
 

      NnNn V    ,  (65) 

 
which was not obvious in the beginning. 
 

The most probable distance between two 
internal links of a polymer chain 

 
If two internal links of a chain are selected 

according to the condition 1 << k << n << N, the 
polymer chain is divided into three sections with the 
lengths of k, n−k and N−n, to which the fractions of the 

total chain length Nkk  ,   N/knkn   

and   NnNnN   correspond. 

Let us suggest that 31,j   are numbers of 

sections with quantities of links k, n – k and N – n, to 
which fractions α1 = k / N, α2 = (n−k) / N and α3 = (n−k) 
/ N from general number N of links in a chain are 
corresponded. 

Extending the above−mentioned procedure of 
analysis of two chain sections to three sections, we get 
the general expression for the distribution density of the 
end of the given section regarding to its beginning: 

 

}x)(xNaexp{)j( ji
i

ji
i

jijj
d 2222 21    , 

31,j  , d,i 1 .    (66) 

 
Here βj is a fraction of conformational volume of the 
given section in the sum of conformational volumes of 

all sections; xji , d,i 1  are semiaxes of 
conformational ellipsoid j with center in the beginning 
of the given section. The surfaces of this section involve 
the states of its end.  

The square deviations σji of Gaussian part of 
distribution (66) obey the normalization conditions of 
the form: 
 

 
i

jij Nda  22 .   (67) 

At equiprobability of walks in all directions of 
d–dimensional space we have: 
 

Na jjij  22
0

2  .   (68) 

 
In this case the most probable distance between 

the beginning and the end of the chain in the given 
section will be equal to:  
 

 


j

)d/(d
j

jf,N
j

)(

R
R

21


,   (69) 

and for βj  the following expression will be 
correct: 

∑
j

d
j

d
j

j 


  .    (70) 

According to (69) the value of Rj depends not 
only on the length of the given chain section but also on 
where this section has been chosen. Thus, we can note 
again that selected three sections of polymer chain are 
not independent, but are interactive subsystems. 
Therefore, total free energy of conformation of the 
chain three sections exceeds free energy of 
conformation of undeformed Flory coil. But the 
following equality holds identically: 
 

vf,NkNknk FFFF   ,  (71) 

 
where the multiplicity of Flory coil's volume 

deformation at the division of the chain into three 
sections is determined by the expression: 
 

  d
f,N

d
nN

d
kn

d
kv RRRR   .              (72) 

 
Conclusions 

 
Fixation of the position of polymer chain 

internal links separates its conformational volume into 
interacting subsystems. Their total conformational 
volume is smaller, and free energy is larger than the 
conformational volume and free energy of Flory coil, 
respectively. From expressions, which determine the 
probable distance between the polymer chain's internal 
link and its ends, as well as between any internal links, 
it follows that the structure of the polymer chain 
conformational volume is heterogeneous: the largest 
density of the number of links is observed near the 
chain ends. This can result in blockage of the 
macroradical's active centre and appear as a linear chain 
termination.  
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