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The number of configurations L of the linear polymeric chain accurate within the constant multiplier neared to unit is
unambiguously determined via the average variance z of the step of SARW trajectory: L ~zN. Probabilistic analysis of

the SARW trajectories leads to the expression z = (2d — 1) (I — p), in which p is the average upon the all SARW
trajectories probability to discover the neighbouring cell by occupied. The SARW statistics leads to the ratio

z =(2d —l)exp{—d 2

’
, in which @ is an average occupancy cell upon the conformational volume. From the com-

p:l—exp{—d+2

g

parison of these expressions the next relationship follows: . The three last expressions are
retained for the linear chains and polymeric stars into diluted and concentrated solutions, ideal and real ones. The
number of configurations L2N for any pair of rays of the polymeric star with the s rays by the N length is determined by
the expression L2N = z2N, and for the whole star LsN = zs(s—I)N.
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p:l—exp{— 9}
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NOCIeOHUX 8bIPAdICEHUS COXPAHAIOMCS OJiA TUHEHbIX Yenell U NOIUMEPHBIX 36e30 6 pa30as/IeHHbIX, KOHYEHMPUPOBAH-
HbIX, UOeanbHblX U peanvHvlx pacmeopax. Konuuecmeo xongueypayuii L2N ons n1060ii napel nyueil noIumMepHoll 36e3-
0vl ¢ ryyamu s 0aunou N onpedensemcs evipadiceruem L2N = z2N, u ona eceii 36e3061 LsN = zs(s—1)N.

1. INTRODUCTION

The number of configurations L of a polymeric
chain is one among methods of its conformational state
realization. Under this sense L is the statistical analogue
of the important thermodynamical characteristic of the
conformational state of a polymeric chain, namely its
entropy S: S = klnL, where k is the Boltzmann’s
constant.

The first results of the numerical estimation L
for linear polymeric chain at little values of number of
its inks N with the use of the Monte—Carlo method were
interpreted in a form of the scaling dependence [1, 2]:

L~z"N"" (1)
Parameter z was determined as un—universal constant or
effective coordinating number of d-measured cubic

lattice, in space of which the trajectory of self—avoiding
random walks (SARW) of the polymeric chain is con-

structed; 7 is the universal scaling index, depending
only on the dimension d of the screen space.

The first estimations of values z = 4,68 and 7 = 1,16 at

d = 3 later were made more exact: z = 4,6853 [3], 7 -
1,1596 [4].

For polymeric star consisting of s rays by equal length
N, the number of configurations is also postulated by
the scaling expression of type (1) [5, 6]:
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L~z"N"" )
With the use of the calculations performed by

the methods of group renormalization of field theory [7]
and by the Monte—Carlo method [8—-10] it was shown,

that the scaling index Vs of the polymeric star very
nontrivially depends on the number of the rays: under

the s increasing the index Vs firstly slowly is decreased
to zero (at s ~ 7), and after that under s > 7 it’s sharply

decreased taking the negative values up to = —29 ats
=32 [8]. Such values are badly agreed with the physical
interpretation of the scaling index. Probably, this caused
by the absence of numerical estimations of z parameter
and its possible dependence on s and N.

In connection with this fact let us note, that the
both expressions (1) and (2) represent the number of the
configurations of polymeric chain as two co—factors,
absolutely different upon its «weight». Let us estimate
of their weights accordingly to the expression (1) for
linear polymeric chain using the presented above values
z = 4,68 and - 1,16 for the reference point. At N =
50 we will obtain: L = 4,6850 500,16 = (3,3 1033)(1,9).
So, the main factor determining the value L, is the
co—factor zN, against the background of which the



7=l e L
co—factor NV has an insignificant role. This is
visualized also under the comparison of their
endowment into the entropy of conformation which is

proportional to Nlnz = 77,1 and (7 _l)lnN = 0,6
correspondingly. As we can see, these endowments are
differed on two orders; under the N increasing the
difference will be just only increased.

That is why in the presented paper the all atten-
tion will be paid into the analysis of z parameter of li-
near chains and polymeric stars into diluted and concen-
trated, ideal and real solutions.

2. AN AVERAGE VARIANCE OF
TRAJECTORIES STEP OF SARW AND THEIR
NUMBER

Any random configuration of the polymeric
chain can be considered as the trajectory of SARW in N
steps into the d—measured screen space with the size of
the cubic cell, which is equal to the length of the mo-
nomeric link of a chain. The connectedness of the
monomeric links into a polymeric chain makes the first
and very important contingency on the trajectory of the
SARW, namely the prohibition of step backwards [8].
That is why only the first step has the 2d methods or
variants of transition into the neighboring cells; the
second and the following steps can to have not more
than 2d-1 variants of the transition. If among 2d—-1 of
the neighboring cells the n are occupied, then the
number of the variants of transition on presented step is
equal to the number of unoccupied or empty cells, that
is 2d—1-n. The number n can be changed via the limits
from 0 to 2d—1. The last means that the trajectory of
SARW finds oneself into the trap with the absence of
variants of the transition into the neighboring cells. This
case is very interesting for the kinetics of the
macroradical propagation at the polymerization, since
represents by itself the monomolecular chain
termination [11]. Under analysis of the number of
configurations of polymeric chain the value n can be
limited by a number of 2d—2 which makes the following
step by monovariant, and therefore, by possible.

Let introduce the average probability pn of that
the n of the neighboring cells occupied. Then the
average variance of step zp for the all trajectories of

SARW will be equal:
2d-2

z, = Z(Zd—l—n)pn
=0

Every step of the SARW trajectory represents
by itself the 2d—1 independent tests on occupancy of the
neighboring cells and random transition into the one
among free cells. Therefore, in accordance with the
theorem about the repeated tests the average probability
of that among of 2d—1 of the neighboring cells exactly n
will be occupied, and 2d—1—n will be vacant, is ordered
to the binomial distribution law:

p,=Cr p"(1=p)*" )

Here the binomial coefficients are described by
the expressions:

Cr . =2d-DV/nl(2d -1-n)!

3)

©)
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p is the mathematical expectation or the average upon
the all SARW trajectories probability of the occupancy
of the one cell.
Combining the (3) and (4), we will obtain:
242
n n 2d-1-n
z,= ) (2d-1-m)C;, p"(1-p) ©)
n=0
Due to the probabilistic or stochastic character
of the SARW trajectories the expression (6) is true only

at d 22. For the one—dimensional space only the first
step has the variance 2d, the rest of N-1 steps
determined, in other words are not stochastic, and that is
why cannot be described by the expression (6).

Since in accordance with the determination of
(6) zp is the average variance of the step of trajectories
in N-1 steps, and the first step has the 2d variants, a
general number Lp of different trajectories or configura-
tions of polymeric chain upon the property of the mul-
tiplicativity will be equal to:

2d
L =—2z 7

P z, p , (7)

The expression (6) permits to analyze the en-
dowments of steps with the variance 2d—1-n into the
average variance of step zp of SARW trajectories. Let
us illustrate of this fact on the example of d = 3—space,
for which the expression (6) takes the form:

z,=X1-p) +2@-p)' 3Q'(1-p) 2@ (1-p'+5p'(=p)  (8)
Under two random values pl = 0,1 and p2 =

0,01 we have correspondingly:
z,, =2,9525+1,3122+0,2187+0,0162+0,0004= 4,50

z,, = 4,7549+01921+0,0029+ 2107 + 5107 = 4,95

Here the first terms give the endowment into zp
steps with n = 0, the second ones — with n = 1 and ect.
As we can see, under the p decreasing the average
variance of a step is increased at the expense of the

sharp steps endowment decreasing with n 2 1 and
sharp increasing of the steps endowment with n = 0.

However, if don’t use of this detail informa-
tion, but to be concentrated only on the value zp, it can
be find without taking into account of the binomial dis-
tribution law. Really, since the p is an average upon the
all trajectories probability to discover the occupied cell,
the mathematical expectation of the number of occupied
cells at 2d—1 independent tests will be equal to (2d—1)p.
Correspondingly, the mathematical expectation of the
number of empty cells under the same 2d-1
independent tests will be equal to (2d—1)(1—p).

Exactly this number determines the average va-
riance of a step of the SARW trajectories:

z,=@2d=D(-p) ©9)

By substituting in this expression the previous
undefined values p1 = 0,1 and p2 = 0,01, we will again
obtain zpl = 4,5 and zp2 = 4,95.

At p <<'1 the expression (9) can be written in
the form

z, =(2d ~1)exp(-p) (10)
As we can see from the (9) and (10), at p =0

the average variance of a step of the SARW trajectories
takes its maximal value: zp = 2d-1. Correspondingly,



the maximal number of the SARW trajectories or the
configurations of polymeric chain replies to a case p =
0:
__ = _(2d-1)" (11)
C2d-1
Condition p = 0 points on the single contingen-
cies, superposed on the SARW trajectories: any among
their steps cannot be returned due to the connectedness
of the monomeric links into the chain. The remaining
contingencies of the self—avoiding random walks lead to
the condition p > 0.

Performed analysis shows, that the average
variance of a step of the SARW trajectories is the
universal function only on two parameters, namely d
and p. However, into presented approach the parameter
p is not determined. Evidently, it should be depending
on the type of a polymeric chain (for example, linear or
star—like), the length of a chain or the rays and their
number, the concentration of a polymer into solution
and its thermodynamical properties (ideal or real). An
analysis of the influence of these factors on parameter p
let’s carried out within the strict SARW statistics [12,
13], which considers the conformation of a polymeric
chain as the result of the statistical average upon the all
possible configurations with taking into account the
probability of their realization.

max

3. AN AVARAGE VARIANCE OF THE STEP IN
THE SARW STATISTICS

3.1. Linear polymeric chains
3.1.1. Diluted solutions, ideal & real ones

The SARW statistics of linear polymeric chain
into diluted solution determines [12] the density of dis-

tribution w(/l)

(A)H dﬂ i=1, d of that the SARW trajectory by its
last step hits into the volume of the elementary layer

R{T1,dA

i

to which corresponds the probability

on the surface of the equilibrium conforma-

tional ellipsoid with the semiaxises Xi = Rf ﬁ“" , in a
form

(1) = exp [RfJ (nlz+; zzj

2
o.=a’N

(12)

Here: is the root—-mean—square
deviation of the Gaussian part (12); Rf is the most prob-
able radius of the polymeric chain conformation into the
ideal diluted solution or the radius of the un—deformated
Flory ball:

R, = a2 (13)
It follows from this
(Rf /O_O)z _ N2 (14)
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Parameters ~ 7 are the multiplication factors of

a linear deformation of the Flory ball along the corres-
: : ImA =4, .

ponding axises of d—measured space; "’ v is the

multiplication factor of the volumetric deformation. For

a polymeric chain into the ideal solution the all /1" =1

and = 1. Under any deformations of the Flory ball
its conformational volume is decreased, that is why in

the real solution ~ 7 <1.

Parameters ~* cannot take the unconditioned
values, since they are connected via the ratio

2 _
Zi‘/z,. =d/TL,A (15)

This permits to write the eq. (12) in more con-
venient form for the following analysis:

o(2) = exp —dzz(-} /4

Oy

(16)

Since the density of distribution represents the
result of the statistical average upon the all possible
configurations of a polymeric chain with taking into
account of the probability of their realization, it can be

considered as the ratio of number L, of the SARW
trajectories, realizing the presented conformational
state, to the maximally possible number of the trajecto-
ries which limited only by the connectedness of the
links into a chain:

&(A)=L,/ Ly, a7
Taking into account the eq. (11), it follows

from this:
2d
L = 2d-1)" w(2
0=5g 7241 ) (18)

By substituting of the expressions (14) and (16)
into (18), we will obtain

N
=2 2d {(2&, 1) p{ d;LzNz(l d)/(d+2)/lv}:| (19)

2d -1
This permits to write
2d
L, =——2z, 20
2d -1 20)

B

zZ, . . .
where ~¢ is an average variance of a step in the SARW
statistics:

z,=(2d-1) exp{

Next let’s introduce an average occupancy of a
cell into the conformational volume of a polymeric
chain via the ratio

a’N
R{Z,
from which with taking into account of (13) follows
9 — NZ(I—d)/(d+2) //1
Comparing the (21) and (23), we find

d2 +2 N2 ) o } @1

0 =

(22)

(23)



z,=(2d-1) exp{—%@} (24)

Definitionally on (22) 0 is the probability to
discover the cell occupied into conformational volume
of linear polymeric chain, and under this sense it could
be equated to p. However, such assumption doesn’t take
into account, that the expression (22) into the evident
form supposes the uniform distribution of the links of a
chain into its conformational volume. Any among
SARW trajectories cannot be uniformly distributed
upon the whole conformational volume and that is why
due to the local character of the SARW trajectories the

condition p > 0 should be performed. Comparing the
expressions (9) and (24) and taking into account that the
both of them should represent the same physical value

z =Z =2Z . . .
’ @ , in general case we obtain the following

relationship:

l—pzexp{—d;L29}

the partial case of which under p <<'1 and 0 << 1is the
ratio

(25)

_d+2

2
Let’s note that although the SARW statistics is
based on the indispensable condition N >> 1, both con-

p 0 (26)

ditions p << 1 and 0 << 1 can simultaneously and ex-
actly don’t perform. That is why more general
expression (25) will be used into the following
calculations.

In accordance with the (7) and (20) under condition

z =z =z L . .
P @ between 7 and @ the difference in

co—factors 2d/zp and 2d/(2d-1) neared to 1 and having a
little significance at the co—factor zN is kept. That is

why without a great error it can be taken that Lp = L,
=L, and L can be expressed via the ratio

L=z" 27
and finally the average variance of a step of trajectories
of linear polymerization for a chain in the SARW statis-
tics can be determined via expression

z=(d-1) exp{—d;za}

For illustration of the dependence of 0 ,pandzonN, d

(28)

and ~ " in Table 1 there are their calculated values upon
the expressions (23), (25) and (28).

Table 1

d=2, d=3,

N 4 =1 A, =1
9 P z 0 P Z

20 0,224(0,361(1,918)0,091|0,203| 3,982
50 10,141]0,24612,261/0,044]0,103] 4,482
100 0,1 10,181]2,456|0,025]|0,061| 4,694
10> 0,032(0,06112,816/0,004/0,010| 4,951
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10*  (0,0100,020[2,941/0,001|0,003| 4,992

d=3, =4,
N A, =05 L =1

0 | p |z | p| @ z

20 0,182(0,3673,172| 0,05 [0,139| 6,025
50 0,087/0,197/4,018] 0,02 [0,058| 6,592
100 0,05 |0,118}4,402 0,01 [0,029] 6,793
10°  10,008/0,0204,901/0,001(0,003| 6,979
10*  10,001/0,003/4,984 — | — | 6,988

As a short comment to the Table 1, let’s note,
that at the chain length propagation an average variance
of a step of the SARW trajectories is increased, in the
limit N ™ © tending to the value 2—1; deformation of
the Flory ball for example, under converting of the po-
lymeric chain of the ideal solution into the real one or
under the action of the external forces, in particular of
the shear ones under the gradient rate of the hydrody-

namic flow, increases of 0 and p and decreases z,
sharply decreasing the number of the configurations
realizing the presented conformational state.

As it was note earlier, an average probability p
to discover of cell occupied due to local character of the
SARW trajectories is more than the average occupation

0 of the cell into the conformational space of a poly-
meric chain. This permits us like to the determination of

0 accordingly to (22), to express of p via the average
gly g
configurational volume V¢, which consists of a part of

d
the conformational volume V = Rf ﬂv :
p=a’N/ V, (29)
Comparing the (29) and (22), we will obtain
V.IV=0/p (30)

In Table 2 there are calculated values of an av-
erage part of the configurational volume on conforma-
tional one under different variants.

As we can see, the configurational volume oc-
cupies a great part of the conformational volume, testi-
fying to «smeared» SARW trajectory into the space of a
walk. At the length of a chain propagation the part Vc/V
is decreased and in a range N > ® is stabilized by the
ratio:

VIV =2/(d+2) (1)
Table 2
VJV =0
N d= 2, d:3, d:3s d:4s
A=1|A=1]{41=05|4-=

20 0,620 0,448 0,496 0,359

50 0,574 0,424 0,444 0,344
100 0,551 0,413 0,425 0,339
1000 0,516 0,402 0,400 0,333
10000 0,500 0,400 0,400 0,333




3.1.2. Concentrated solutions and melts

In accordance with the conclusion done from
the expression (9), which determines an average va-
riance of a step of the SARW trajectories for the linear
polymeric chain via average probability to discover the
occupied cell, it kept true for any polymeric chain into
the concentrated solutions and melts, but at this the p
value should be additionally depended on the concentra-
tion of polymer. Let us show also, that the main
expressions (25) and (28) for the concentrated solutions
are kept in the previous form (for short the term «melt»
will be used as the need arises).

The SARW statistics [13] of the linear poly-
meric chains into the concentrated solutions is based on
the notion of m—ball of the intertwined between them-
selves linear polymeric chains by the same length N
with the conformational radius Rm:

1/(d+2
R, =Rm""? (32)

Number m of the chains into the m—ball de-
pends on the concentration of polymer in the solution:

m 200d+2) plp’ (33)
Here: P is the density, and P s the critical
density of the solution upon polymer, to which corres-
ponds the start of the Flory balls conformational vo-
lumes overlapping. It is determined by the expression:

p = MON/NAR;’. (34)
in which MO is the molar mass of the link of a chain;
NA is the Avogadro number.

By introducing the density Po into a volume
of the monomeric link ad via the ratio

py=M,/N a’ (35)

the expression (34) can be rewritten in a form:
p* _ pONZ(l—d)/(d+2) (36)
An average occupancy of the cell 0 into the

d

conformational volume ~ "V of m—ball can be deter-
mined standardly

@=a'mN/R:A, (37)

Here, as before, the ﬂv parameter is the mul-

tiplicity of the volumetric deformation of the m-—ball;

. . . A .
into the ideal solution and melt = = 1, into the real

concentrated solutions ﬂv <1.
With taking into account of the previous ex-
pressions (32)—(36) It’s follows from the (37)

0="L"14
Po
So, an average occupancy of the cell 0 into

the concentrated solutions is the linear function of the
concentration of polymer and should be weakly depend

(3%)

on the length of a chain only via parameter ~ "V, which
can slightly decreased in the real solutions at the N
propagation [14].
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The density of probability a)(/’t) for any linear
polymeric chain into m—ball is described by the expres-
sion like to (16), but via the conformational radius of
the m—ball:

2
@(A) = exp —%[ﬁj /A,

Oy

(39)

2 _
Here as same as earlier, O = N; that is why
from the determination of Rm accordingly to (32) and
following expressions (33)—(36) follows:

(Rm / G() )2 = ﬁN
0
This permits to rewrite the expression (39) in
the next form:

wo(1)= exp{— d;2£N//1V}

0
By substituting of the (41) into determination

(18) the numbers L of the SARW trajectories for any

linear polymeric chain into m—ball, we will obtain:

N
L:A (2d —1)exp —Mﬁ/lv
2d -1 2 p,

This implyies the expression for average va-
riance of the step of SARW trajectories of the linear
polymeric chain into concentrated solutions and melts:

z:(zd—l)exp{—wﬁ/zv}
2 p

which in turn with taken into account of the (38) takes a
form

z=(d-1) exp{— % 9}

So, the difference between z for diluted and
concentrated solutions is determined by the expressions

(40)

(41)
(42)

(43)

(44)

of numerical estimation of 9. Therefore, the

relationship between p and 0 for concentrated solutions
is kept in the previous form (25), which for more
convenience can be rewritten as follows

pzl—exp{—dgzﬁ}

Let us demonstrate as the illustration in Table 3

(45)

the numerical estimations of 6, p and z, and also the

0lp=V.IV

ratios M in which Vm is the conforma-
tional volume, and Vc is the configurational volume of

polymeric chain into m-ball, at different N and =
Calculated done for variant d = 3, A, =1 on example of

polystyrene for which M0 = 104,15 g/mole, a = 1,86
10—-10 m; that is why in accordance with (35) and (36)

we have Po - 26,9 106 g/mole and P = 0,6757 and =
0,1071 g/mole at N = 102 and N = 103 respectively.

The values p/p = 1,554 and = 9,804 corres-
pond to the polystyrene melts.



As we can see from the Table 3, at the chosen

values N the ratio e/p is near to the limited one 2/(d +
2) = 0,4. Thus, even into the concentrated solutions the
configurational volume, which is an average volume of
the SARW trajectories, consists of the great part of the
conformational volume that assumes a strong interweav-
ing of the polymeric chains into m—ball. At the polymer

*

concentration increasing at plp >] an average va-
riance of the SARW trajectory is visibly decreased that
corresponds to the sharp decreasing of the number of
configurations L, realizing the conformational state of
the polymeric chain into m-ball. An Independence of
the presented calculated parameters on the length of a
chain is good shown upon their similar values for the
melts.

Table 3

) N =100

o 1 1,1 1,2 1,3 1,554
6=p/p, | 0,025 0,028 | 0,030 | 0,033 | 0,039
p 0,061 | 0,067 | 0,073 | 0,078 | 0,093
z 4,696 | 4,666 | 4,638 | 4,608 | 4,535
e/p 0,413 | 0,414 | 0,415 | 0,416 | 0,420
p) N = 1000

o 1 2 3 4 |9,804
0=plp, | 0,004 0,008 | 0012|0016 | 0,039
p 0,001 | 0,020 | 0,029 | 0,039 | 0,093
z 4,951 | 4901 | 4,853 | 4,805 | 4,535
0 /o 0,402 | 0,404 | 0,406 | 0,408 | 0,420

3.2. Polymeric stars
3.2.1. Diluted solutions

Let the polymeric star consists from the s rays
equal to N length. For any pair of rays forming the
linear chain by 2N length, the SARW statistics [15]
determines the density of distribution by the expression:

2
a)(/I)z exp —d;rz(RsJ /A,

Oy

(46)

2 = 2 . . .
in which % =4 2N and Rs is the conformational radius

of any undefined chosen pair of rays, determining also
d

the general conformational volume R4, of the poly-

meric star:
R — a(2N)3/(d+2)(S/2)l /(d+2)
It follows from this

w(/’t) _ exp{— d -21- 2 (2N)(4—d)/(d+2)(s/2)2/(d+2) /1\} (48)

By substituting of this expression into determi-
nation of L accordingly to (18), we will obtain

that gives the possibility to express an average variance
of a step of the SARW trajectories for any pair of rays
of the polymeric star:

(47)

(49)
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z=(2d-)) exp{—%(ZN)z(l_d)/(‘m) (s/2)%“? //1‘} (50)

An average occupancy of a cell into conforma-
tional volume of the polymeric star we find from the
expression:

a’sN
0=
RY2, D)
which can be rewritten in a form
6 = (2NN (5/2)2 12 (52)
Comparing (50) and (52), we have again
z=(2d - l)exp{— a+2 ; 2 0} (53)

Therefore, the relationship (24) is kept also for
the polymeric star.

The numbers of configurations for pair of rays
forming the linear chain by 2N length, and for the whole
polymeric star taking into account that the number of
the independent pairs consisting of s rays equal to s(s —

1)/2, will be equal correspondingly:
LZN — ZZN, L. = Zs(s—l)N , (54)

sN

For demonstration of the dependence of 0 , p and z pa-
rameters on the number of rays s in polymeric star in
Tabl. 4 presented their values at 2N =100, d=3, A, = 1.

Table 4

s 2 3 6 9
1] 0,0251 0,0295 0,0390 0,0458
p 0,0608 0,0712 0,0929 0,1083
z 4,6956 4,6441 4,5357 4,4585
‘9/p 0,413 0,415 0,420 0,423
s 12 15 18 21
1] 0,0514 0,0562 0,0605 0,0643
p 0,1207 0,1312 0,1403 0,1486
z 4,3966 4,3442 4,2982 4,2571
0 /p 0,426 0,429 0,431 0,433

3.2.2. Concentrated solutions and melts

SARW statistics of the polymeric stars into the
concentrated solutions, as same as the linear chains, is
based on the conception of the m—ball of intertwining
between themselves polymeric stars. For any pair of
rays into undefined star of the m-—ball the density of
distribution is as follow:

2
(1) = exp —%(ﬁ] /2

Oy

(35)

2 _ 2
Here Go =4d 2N, and R’”S is the conforma-
tional radius of the m—ball of polymeric stars:

Rms — a(zN)3/(d+2) (mS / 2)1/(d+2) (56)
From the determination
0=a'msN/R:A, (57)



with  taking into account of the ratios
m2/(d+2) _ ,0/,0* , p* _ pO(ZN)2(1—d)/(d+2)(S/2)2/(d+2)
it can be written
P
O0=—/4, 58
Po 58)

So, into the concentrated solutions of polymer-

ic starts the value & does not depend on the length and
the number of rays, but only on the concentration of
polymer into solution.

Next, using the developed algorithm and the
expressions (55)—(58), the standard expression for z
type (24), (44) and (53) can be again obtained.

4. CONCLUSION

The number of configurations L for linear po-

lymeric chain in d 2 2—measured lattice space accurate
within multipliers 2d/z or 2d/(2d-1), neared to unit, is
unambiguously determined via the average variance of
the step z of the SARW trajectories:

L=z" (59)

The probabilistic analysis of the SARW trajec-
tories determines z as the mathematical expectation of
the number of free among 2d—1 neighbouring cells via
average upon the all SARW trajectories probability p to
discover the occupied cell. It leads to the expression:

z=2d-1)(1-p) (60)

in which, however, the value p is kept indeterminate.
SARW statistics which considers the conformation of
polymeric chain as the result of the statistical average
upon the all its possible configurations with taking into
account of the probability of their realization leads to
the ratio:

z=(2d-1) exp{— % 9}

in which 0 is an average upon the conformational vo-
lume occupancy of cell or probability to discover the
cell occupied into the conformational volume.

From the comparison of (60) and (61) the next
relationship follows

p= l—exp{—dzzﬁ}

On the basis of values p and 0 it can be de-
termined the ratio of the average local volume of confi-

(61)

(62)

guration Vc to the conformational volume V of poly-
meric chain:

V./V=0/p (63)

At the N increasing this ratio is tended to its
limit

0/p—>2/(d+2) npi N—> © (64)
pointing on the great smeared upon the average of the
SARW trajectory into conformational volume of the
polymeric chain.

The expressions (59)—(63) are universal in
sense that they are true for any linear polymeric chain,
including the superposed from undefined pair of rays of
polymeric star, in diluted and concentrated, ideal and

real solutions. Into diluted solutions 9, p and z depend
on the length of a chain, and correspondingly on length
and number of rays in polymeric star; in concentrated
solutions these parameters are function only on the
concentration of polymer.
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