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The number of configurations L of the linear polymeric chain accurate within the constant multiplier neared to unit is 
unambiguously determined via the average variance z of the step of SARW trajectory: L  zN. Probabilistic analysis of 
the SARW trajectories leads to the expression z = (2d  1) (1  p), in which p is the average upon the all SARW 
trajectories probability to discover the neighbouring cell by occupied. The SARW statistics leads to the ratio 
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, in which θ is an average occupancy cell upon the conformational volume. From the com-

parison of these expressions the next relationship follows: 
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. The three last expressions are 
retained for the linear chains and polymeric stars into diluted and concentrated solutions, ideal and real ones. The 
number of configurations L2N for any pair of rays of the polymeric star with the s rays by the N length is determined by 
the expression L2N = z2N, and for the whole star LsN = zs(s1)N. 
 

Ключевые слова: конфигурация, конформация, линейные полимерные цепи, полимерные звезды, статистический метод 
SARW. 

 
Число конфигураций L линейной полимерной цепи с точностью до постоянного множителя приближенного к 
единице однозначно определяется через среднее отклонение z шага траектории SARW: L  zN. Вероятност-
ный анализ траектории SARW приводит к выражению z = (2d  1) (1  p), где р равно средней по всей траек-
тории SARW вероятности обнаружить соседние ячейки занятыми. Статистика SARW приводит к соотно-
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, в котором θ является средней ячейкой размещения на конформацион-

ном объеме. Из сравнения этих выражений получается следующее отношение: 
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. Три 
последних выражения сохраняются для линейных цепей и полимерных звезд в разбавленных, концентрирован-
ных, идеальных и реальных растворах. Количество конфигураций L2N для любой пары лучей полимерной звез-
ды с лучами s длиной N определяется выражением L2N = z2N, и для всей звезды LsN = zs(s1)N. 

 
1. INTRODUCTION 

The number of configurations L of a polymeric 
chain is one among methods of its conformational state 
realization. Under this sense L is the statistical analogue 
of the important thermodynamical characteristic of the 
conformational state of a polymeric chain, namely its 
entropy S: S = klnL, where k is the Boltzmann’s 
constant. 

The first results of the numerical estimation L 
for linear polymeric chain at little values of number of 
its inks N with the use of the Monte−Carlo method were 
interpreted in a form of the scaling dependence [1, 2]: 

1 NzL N
, (1) 

Parameter z was determined as un−universal constant or 
effective coordinating number of d–measured cubic 
lattice, in space of which the trajectory of self−avoiding 
random walks (SARW) of the polymeric chain is con-

structed;   is the universal scaling index, depending 
only on the dimension d of the screen space. 

The first estimations of values z = 4,68 and   = 1,16 at 

d = 3 later were made more exact: z = 4,6853 [3],   = 
1,1596 [4]. 
For polymeric star consisting of s rays by equal length 
N, the number of configurations is also postulated by 
the scaling expression of type (1) [5, 6]: 

1 sNzL sN 
, (2) 

With the use of the calculations performed by 
the methods of group renormalization of field theory [7] 
and by the Monte−Carlo method [810] it was shown, 

that the scaling index s  of the polymeric star very 
nontrivially depends on the number of the rays: under 

the s increasing the index s  firstly slowly is decreased 
to zero (at s ~ 7), and after that under s > 7 it’s sharply 

decreased taking the negative values up to s  = 29 at s 
= 32 [8]. Such values are badly agreed with the physical 
interpretation of the scaling index. Probably, this caused 
by the absence of numerical estimations of z parameter 
and its possible dependence on s and N. 

In connection with this fact let us note, that the 
both expressions (1) and (2) represent the number of the 
configurations of polymeric chain as two cofactors, 
absolutely different upon its «weight». Let us estimate 
of their weights accordingly to the expression (1) for 
linear polymeric chain using the presented above values 

z = 4,68 and   = 1,16 for the reference point. At N = 
50 we will obtain: L = 4,6850 500,16 = (3,3 1033)(1,9). 
So, the main factor determining the value L, is the 
cofactor zN, against the background of which the 



106 

cofactor 
1N  has an insignificant role. This is 

visualized also under the comparison of their 
endowment into the entropy of conformation which is 

proportional to Nlnz = 77,1 and  1 lnN = 0,6 
correspondingly. As we can see, these endowments are 
differed on two orders; under the N increasing the 
difference will be just only increased. 

That is why in the presented paper the all atten-
tion will be paid into the analysis of z parameter of li-
near chains and polymeric stars into diluted and concen-
trated, ideal and real solutions. 

 
2. AN AVERAGE VARIANCE OF 

TRAJECTORIES STEP OF SARW AND THEIR 
NUMBER 

Any random configuration of the polymeric 
chain can be considered as the trajectory of SARW in N 
steps into the dmeasured screen space with the size of 
the cubic cell, which is equal to the length of the mo-
nomeric link of a chain. The connectedness of the 
monomeric links into a polymeric chain makes the first 
and very important contingency on the trajectory of the 
SARW, namely the prohibition of step backwards [8]. 
That is why only the first step has the 2d methods or 
variants of transition into the neighboring cells; the 
second and the following steps can to have not more 
than 2d1 variants of the transition. If among 2d1 of 
the neighboring cells the n are occupied, then the 
number of the variants of transition on presented step is 
equal to the number of unoccupied or empty cells, that 
is 2d1n. The number n can be changed via the limits 
from 0 to 2d1. The last means that the trajectory of 
SARW finds oneself into the trap with the absence of 
variants of the transition into the neighboring cells. This 
case is very interesting for the kinetics of the 
macroradical propagation at the polymerization, since 
represents by itself the monomolecular chain 
termination [11]. Under analysis of the number of 
configurations of polymeric chain the value n can be 
limited by a number of 2d2 which makes the following 
step by monovariant, and therefore, by possible. 

Let introduce the average probability pn of that 
the n of the neighboring cells occupied. Then the 
average variance of step zp for the all trajectories of 
SARW will be equal: 
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(3) 

Every step of the SARW trajectory represents 
by itself the 2d1 independent tests on occupancy of the 
neighboring cells and random transition into the one 
among free cells. Therefore, in accordance with the 
theorem about the repeated tests the average probability 
of that among of 2d1 of the neighboring cells exactly n 
will be occupied, and 2d1n will be vacant, is ordered 
to the binomial distribution law: 

ndnn
dn ppCp 
  12
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, (4) 

Here the binomial coefficients are described by 
the expressions: 

)!12(!/)!12(12 ndndCn
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(5) 

р is the mathematical expectation or the average upon 
the all SARW trajectories probability of the occupancy 
of the one cell. 

Combining the (3) and (4), we will obtain: 
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(6) 

Due to the probabilistic or stochastic character 
of the SARW trajectories the expression (6) is true only 

at d  2. For the onedimensional space only the first 
step has the variance 2d, the rest of N1 steps 
determined, in other words are not stochastic, and that is 
why cannot be described by the expression (6). 

Since in accordance with the determination of 
(6) zp is the average variance of the step of trajectories 
in N1 steps, and the first step has the 2d variants, a 
general number Lp of different trajectories or configura-
tions of polymeric chain upon the property of the mul-
tiplicativity will be equal to: 
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z
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L
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, 
(7) 

The expression (6) permits to analyze the en-
dowments of steps with the variance 2d1n into the 
average variance of step zp of SARW trajectories. Let 
us illustrate of this fact on the example of d = 3space, 
for which the expression (6) takes the form: 

)1(5)1(20)1(30)1(20)1(5 4233245 ppppppppzp  (8) 

Under two random values p1 = 0,1 and p2 = 
0,01 we have correspondingly: 

50,40004,00162,02187,03122,19525,21 pz
 

95,41051020029,0019217549,4 75
2  

pz

 Here the first terms give the endowment into zp 
steps with n = 0, the second ones – with n = 1 and ect. 
As we can see, under the p decreasing the average 
variance of a step is increased at the expense of the 

sharp steps endowment decreasing with n   1 and 
sharp increasing of the steps endowment with n = 0. 

However, if don’t use of this detail informa-
tion, but to be concentrated only on the value zp, it can 
be find without taking into account of the binomial dis-
tribution law. Really, since the p is an average upon the 
all trajectories probability to discover the occupied cell, 
the mathematical expectation of the number of occupied 
cells at 2d1 independent tests will be equal to (2d1)p. 
Correspondingly, the mathematical expectation of the 
number of empty cells under the same 2d1 
independent tests will be equal to (2d1)(1p). 

Exactly this number determines the average va-
riance of a step of the SARW trajectories: 

)1)(12( pdz p 
, (9) 

By substituting in this expression the previous 
undefined values p1 = 0,1 and p2 = 0,01, we will again 
obtain zp1 = 4,5 and zp2 = 4,95. 

At p << 1 the expression (9) can be written in 
the form 

)exp()12( pdzp  (10) 

As we can see from the (9) and (10), at p = 0 
the average variance of a step of the SARW trajectories 
takes its maximal value: zp = 2d1. Correspondingly, 
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the maximal number of the SARW trajectories or the 
configurations of polymeric chain replies to a case p = 
0: 

 Nd
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d
L 12

12

2
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(11) 

Condition p = 0 points on the single contingen-
cies, superposed on the SARW trajectories: any among 
their steps cannot be returned due to the connectedness 
of the monomeric links into the chain. The remaining 
contingencies of the selfavoiding random walks lead to 
the condition p > 0. 

Performed analysis shows, that the average 
variance of a step of the SARW trajectories is the 
universal function only on two parameters, namely d 
and p. However, into presented approach the parameter 
p is not determined. Evidently, it should be depending 
on the type of a polymeric chain (for example, linear or 
starlike), the length of a chain or the rays and their 
number, the concentration of a polymer into solution 
and its thermodynamical properties (ideal or real). An 
analysis of the influence of these factors on parameter p 
let’s carried out within the strict SARW statistics [12, 
13], which considers the conformation of a polymeric 
chain as the result of the statistical average upon the all 
possible configurations with taking into account the 
probability of their realization. 

 
3. AN AVARAGE VARIANCE OF THE STEP IN 

THE SARW STATISTICS 
 

3.1. Linear polymeric chains 
 

3.1.1. Diluted solutions, ideal & real ones 
 

The SARW statistics of linear polymeric chain 
into diluted solution determines [12] the density of dis-

tribution   , to which corresponds the probability 

  iid 
 i = 1, d of that the SARW trajectory by its 

last step hits into the volume of the elementary layer 

ii
d
f dR 

 on the surface of the equilibrium conforma-

tional ellipsoid with the semiaxises Xi = Rf i , in a 
form 
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(12) 

Here: 
Na22

0 
 is the rootmeansquare 

deviation of the Gaussian part (12); Rf is the most prob-
able radius of the polymeric chain conformation into the 
ideal diluted solution or the radius of the undeformated 
Flory ball: 
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(13) 

 
It follows from this 
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(14) 

Parameters i  are the multiplication factors of 
a linear deformation of the Flory ball along the corres-

ponding axises of dmeasured space; vii  
 is the 

multiplication factor of the volumetric deformation. For 

a polymeric chain into the ideal solution the all i  = 1 

and v  = 1. Under any deformations of the Flory ball 
its conformational volume is decreased, that is why in 

the real solution v  < 1. 

Parameters i  cannot take the unconditioned 
values, since they are connected via the ratio 
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i

iii d  /2

, 
(15) 

This permits to write the eq. (12) in more con-
venient form for the following analysis: 
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(16) 

Since the density of distribution represents the 
result of the statistical average upon the all possible 
configurations of a polymeric chain with taking into 
account of the probability of their realization, it can be 

considered as the ratio of number L
 of the SARW 

trajectories, realizing the presented conformational 
state, to the maximally possible number of the trajecto-
ries which limited only by the connectedness of the 
links into a chain: 

  max/ LL 
, (17) 

Taking into account the eq. (11), it follows 
from this: 
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By substituting of the expressions (14) and (16) 
into (18), we will obtain 
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This permits to write 
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where z  is an average variance of a step in the SARW 
statistics: 
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Next let’s introduce an average occupancy of a 
cell into the conformational volume of a polymeric 
chain via the ratio 

v
d
f

d

R

Na


  (22) 

from which with taking into account of (13) follows 

v
ddN  /)2/()1(2  (23) 

Comparing the (21) and (23), we find 
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Definitionally on (22)   is the probability to 
discover the cell occupied into conformational volume 
of linear polymeric chain, and under this sense it could 
be equated to p. However, such assumption doesn’t take 
into account, that the expression (22) into the evident 
form supposes the uniform distribution of the links of a 
chain into its conformational volume. Any among 
SARW trajectories cannot be uniformly distributed 
upon the whole conformational volume and that is why 
due to the local character of the SARW trajectories the 

condition p >   should be performed. Comparing the 
expressions (9) and (24) and taking into account that the 
both of them should represent the same physical value 

zzzp   , in general case we obtain the following 
relationship: 
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the partial case of which under p << 1 and   << 1 is the 
ratio 


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(26) 

Let’s note that although the SARW statistics is 
based on the indispensable condition N >> 1, both con-

ditions p << 1 and   << 1 can simultaneously and ex-
actly don’t perform. That is why more general 
expression (25) will be used into the following 
calculations. 
In accordance with the (7) and (20) under condition 

zzzp    between pL
 and L

 the difference in 
cofactors 2d/zp and 2d/(2d1) neared to 1 and having a 
little significance at the cofactor zN is kept. That is 

why without a great error it can be taken that Lp = L
 

= L, and L can be expressed via the ratio 
NzL   (27) 

and finally the average variance of a step of trajectories 
of linear polymerization for a chain in the SARW statis-
tics can be determined via expression 
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For illustration of the dependence of  , p and z on N, d 

and v  in Table 1 there are their calculated values upon 
the expressions (23), (25) and (28). 

Table 1 

N 

d = 2, 
1v  

d = 3, 

1v  
  p z   p z 

20 0,224 0,361 1,918 0,091 0,203 3,982 
50 0,141 0,246 2,261 0,044 0,103 4,482 
100 0,1 0,181 2,456 0,025 0,061 4,694 

310  0,032 0,061 2,816 0,004 0,010 4,951 

410 0,0100,0202,941 0,001 0,003 4,992 

N 

d = 3, 

5,0v  

d = 4, 

1v  

  p z p   z 
20 0,1820,3673,172 0,05 0,139 6,025 
50 0,0870,1974,018 0,02 0,058 6,592 
100 0,05 0,1184,402 0,01 0,029 6,793 

310 0,0080,0204,901 0,001 0,003 6,979 
410 0,0010,0034,984   6,988 

 
As a short comment to the Table 1, let’s note, 

that at the chain length propagation an average variance 
of a step of the SARW trajectories is increased, in the 
limit N   tending to the value 21; deformation of 
the Flory ball for example, under converting of the po-
lymeric chain of the ideal solution into the real one or 
under the action of the external forces, in particular of 
the shear ones under the gradient rate of the hydrody-

namic flow, increases of   and p and decreases z, 
sharply decreasing the number of the configurations 
realizing the presented conformational state. 

As it was note earlier, an average probability p 
to discover of cell occupied due to local character of the 
SARW trajectories is more than the average occupation 
  of the cell into the conformational space of a poly-
meric chain. This permits us like to the determination of 
  accordingly to (22), to express of p via the average 
configurational volume Vc, which consists of a part of 

the conformational volume V = 
d
fR

v : 

c
d VNap  (29) 

Comparing the (29) and (22), we will obtain 

pVVc //  (30) 

In Table 2 there are calculated values of an av-
erage part of the configurational volume on conforma-
tional one under different variants. 

As we can see, the configurational volume oc-
cupies a great part of the conformational volume, testi-
fying to «smeared» SARW trajectory into the space of a 
walk. At the length of a chain propagation the part Vc/V 
is decreased and in a range N   is stabilized by the 
ratio: 

 

)2/(2/  dVVc (31) 

 
Table 2 
 

N 

Vc/V = /p 

d = 2, 

1v
d=3, 

1v  

d=3, 

5,0v  

d=4, 

1v
20 0,620 0,448 0,496 0,359 
50 0,574 0,424 0,444 0,344 

100 0,551 0,413 0,425 0,339 
1000 0,516 0,402 0,400 0,333 

10000 0,500 0,400 0,400 0,333 
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3.1.2. Concentrated solutions and melts 
 

In accordance with the conclusion done from 
the expression (9), which determines an average va-
riance of a step of the SARW trajectories for the linear 
polymeric chain via average probability to discover the 
occupied cell, it kept true for any polymeric chain into 
the concentrated solutions and melts, but at this the p 
value should be additionally depended on the concentra-
tion of polymer. Let us show also, that the main 
expressions (25) and (28) for the concentrated solutions 
are kept in the previous form (for short the term «melt» 
will be used as the need arises). 

The SARW statistics [13] of the linear poly-
meric chains into the concentrated solutions is based on 
the notion of mball of the intertwined between them-
selves linear polymeric chains by the same length N 
with the conformational radius Rm: 

)2/(1  d
fm mRR

 
(32) 

Number m of the chains into the mball de-
pends on the concentration of polymer in the solution: 

   /)2/(2 dm  (33) 

Here:   is the density, and 
  is the critical 

density of the solution upon polymer, to which corres-
ponds the start of the Flory balls conformational vo-
lumes overlapping. It is determined by the expression: 

d
fARNNM /0

 
(34) 

in which M0 is the molar mass of the link of a chain; 
NA is the Avogadro number. 

By introducing the density 0  into a volume 
of the monomeric link ad via the ratio 

d
AaNM /00 

 
(35) 

the expression (34) can be rewritten in a form: 
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0
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An average occupancy of the cell   into the 

conformational volume v
d
mR 

 of mball can be deter-
mined standardly 

v
d
m

d RmNa  /
 

(37) 

Here, as before, the v  parameter is the mul-
tiplicity of the volumetric deformation of the mball; 

into the ideal solution and melt v  = 1, into the real 

concentrated solutions v  < 1. 
With taking into account of the previous ex-

pressions (32)(36) It’s follows from the (37) 

v
 /

0


 

(38) 

So, an average occupancy of the cell   into 
the concentrated solutions is the linear function of the 
concentration of polymer and should be weakly depend 

on the length of a chain only via parameter v , which 
can slightly decreased in the real solutions at the N 
propagation [14]. 

The density of probability    for any linear 
polymeric chain into mball is described by the expres-
sion like to (16), but via the conformational radius of 
the mball: 
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(39) 

Here as same as earlier, 
aN2

0 ; that is why 
from the determination of Rm accordingly to (32) and 
following expressions (33)(36) follows: 

  NRm
0

2
0/


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This permits to rewrite the expression (39) in 
the next form: 
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By substituting of the (41) into determination 
(18) the numbers L of the SARW trajectories for any 
linear polymeric chain into mball, we will obtain: 
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This implyies the expression for average va-
riance of the step of SARW trajectories of the linear 
polymeric chain into concentrated solutions and melts: 
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which in turn with taken into account of the (38) takes a 
form 
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(44) 

So, the difference between z for diluted and 
concentrated solutions is determined by the expressions 

of numerical estimation of  . Therefore, the 

relationship between p and   for concentrated solutions 
is kept in the previous form (25), which for more 
convenience can be rewritten as follows 
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2

2
exp1

d
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(45) 

Let us demonstrate as the illustration in Table 3 

the numerical estimations of  , p and z, and also the 

ratios mc VVp // 
 in which Vm is the conforma-

tional volume, and Vc is the configurational volume of 

polymeric chain into mball, at different N and  . 

Calculated done for variant d = 3, v  = 1 on example of 
polystyrene for which M0 = 104,15 g/mole, a = 1,86 
1010 m; that is why in accordance with (35) and (36) 

we have 0  = 26,9 106 g/mole and 
  = 0,6757 and = 

0,1071 g/mole at N = 102 and N = 103 respectively. 

The values 
 /  = 1,554 and = 9,804 corres-

pond to the polystyrene melts. 
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As we can see from the Table 3, at the chosen 

values N the ratio  /p is near to the limited one 2/(d + 
2) = 0,4. Thus, even into the concentrated solutions the 
configurational volume, which is an average volume of 
the SARW trajectories, consists of the great part of the 
conformational volume that assumes a strong interweav-
ing of the polymeric chains into mball. At the polymer 

concentration increasing at 
 / >1 an average va-

riance of the SARW trajectory is visibly decreased that 
corresponds to the sharp decreasing of the number of 
configurations L, realizing the conformational state of 
the polymeric chain into mball. An Independence of 
the presented calculated parameters on the length of a 
chain is good shown upon their similar values for the 
melts. 

Table 3 




 

N = 100 
1 1,1 1,2 1,3 1,554 

0/  
 0,025 0,028 0,030 0,033 0,039 

p 0,061 0,067 0,073 0,078 0,093 
z 4,696 4,666 4,638 4,608 4,535 
 /p 0,413 0,414 0,415 0,416 0,420 




 

N = 1000 
1 2 3 4 9,804 

0/  
 

0,004 0,008 0,012 0,016 0,039 

p 0,001 0,020 0,029 0,039 0,093 

z 4,951 4,901 4,853 4,805 4,535 

 /p 0,402 0,404 0,406 0,408 0,420 

 
3.2. Polymeric stars 

 
3.2.1. Diluted solutions 

 
Let the polymeric star consists from the s rays 

equal to N length. For any pair of rays forming the 
linear chain by 2N length, the SARW statistics [15] 
determines the density of distribution by the expression: 
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(46) 

in which Na 222
0  , and Rs is the conformational radius 

of any undefined chosen pair of rays, determining also 

the general conformational volume v
d
sR   of the poly-

meric star: 

    )2/(1)2/(3 2/2  dd
s sNaR  (47) 

It follows from this 
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(48) 

By substituting of this expression into determi-
nation of L accordingly to (18), we will obtain 
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(49) 

that gives the possibility to express an average variance 
of a step of the SARW trajectories for any pair of rays 
of the polymeric star: 







 
 

v
ddd sN

d
dz /)2/()2(

2

2
exp)12( )2/(2)2/()1(2 (50) 

An average occupancy of a cell into conforma-
tional volume of the polymeric star we find from the 
expression: 

v
d
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d

R

sNa


 

 
(51) 

which can be rewritten in a form 

  v
ddd sN  /)2/(2 )2/(2)2/()1(2 

 
(52) 

Comparing (50) and (52), we have again 
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Therefore, the relationship (24) is kept also for 
the polymeric star.  

The numbers of configurations for pair of rays 
forming the linear chain by 2N length, and for the whole 
polymeric star taking into account that the number of 
the independent pairs consisting of s rays equal to s(s – 
1)/2, will be equal correspondingly: 

,2
2

N
N zL  ,zL N)s(s

sN
1  

(54) 

For demonstration of the dependence of  , p and z pa-
rameters on the number of rays s in polymeric star in 
Tabl. 4 presented their values at 2N = 100, d = 3, v = 1. 

Table 4 

s 2 3 6 9 
 0,0251 0,0295 0,0390 0,0458 

p 0,0608 0,0712 0,0929 0,1083 
z 4,6956 4,6441 4,5357 4,4585 
 /p 0,413 0,415 0,420 0,423 

s 12 15 18 21 

 0,0514 0,0562 0,0605 0,0643 

p 0,1207 0,1312 0,1403 0,1486 

z 4,3966 4,3442 4,2982 4,2571 

 /p 0,426 0,429 0,431 0,433 

 
3.2.2. Concentrated solutions and melts 

 
SARW statistics of the polymeric stars into the 

concentrated solutions, as same as the linear chains, is 
based on the conception of the mball of intertwining 
between themselves polymeric stars. For any pair of 
rays into undefined star of the mball the density of 
distribution is as follow: 
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Here 
Na 222

0 
, and msR

 is the conforma-
tional radius of the mball of polymeric stars: 

)2/(1)2/(3 )2/()2(  dd
ms msNaR

 
(56) 

From the determination 

v
d
ms

d RmsNa  / (57) 
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with taking into account of the ratios 
   /)2/(2 dm ,     )2/(2)2/()1(2

0 2/2   ddd sN  
it can be written 

v
 /

0


 

(58) 

So, into the concentrated solutions of polymer-

ic starts the value   does not depend on the length and 
the number of rays, but only on the concentration of 
polymer into solution. 

Next, using the developed algorithm and the 
expressions (55)(58), the standard expression for z 
type (24), (44) and (53) can be again obtained. 
 

4. CONCLUSION 
 

The number of configurations L for linear po-

lymeric chain in d   2measured lattice space accurate 
within multipliers 2d/z or 2d/(2d1), neared to unit, is 
unambiguously determined via the average variance of 
the step z of the SARW trajectories: 

NzL   (59) 
The probabilistic analysis of the SARW trajec-

tories determines z as the mathematical expectation of 
the number of free among 2d1 neighbouring cells via 
average upon the all SARW trajectories probability p to 
discover the occupied cell. It leads to the expression: 

)1)(12( pdz   (60) 
in which, however, the value p is kept indeterminate. 
SARW statistics which considers the conformation of 
polymeric chain as the result of the statistical average 
upon the all its possible configurations with taking into 
account of the probability of their realization leads to 
the ratio: 
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(61) 

in which   is an average upon the conformational vo-
lume occupancy of cell or probability to discover the 
cell occupied into the conformational volume. 

From the comparison of (60) and (61) the next 
relationship follows 
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On the basis of values p and   it can be de-
termined the ratio of the average local volume of confi-

guration Vc to the conformational volume V of poly-
meric chain: 

pVVc //  (63) 

At the N increasing this ratio is tended to its 
limit 

)2/(2/  dp  при N   (64) 

pointing on the great smeared upon the average of the 
SARW trajectory into conformational volume of the 
polymeric chain. 

The expressions (59)(63) are universal in 
sense that they are true for any linear polymeric chain, 
including the superposed from undefined pair of rays of 
polymeric star, in diluted and concentrated, ideal and 

real solutions. Into diluted solutions  , p and z depend 
on the length of a chain, and correspondingly on length 
and number of rays in polymeric star; in concentrated 
solutions these parameters are function only on the 
concentration of polymer. 
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