И. О. Григорьева, А. Ф. Дресвянников, Л. Р. Хайруллина

ВЛИЯНИЕ ХЛОРИД-ИОНОВ НА ЭЛЕКТРОХИМИЧЕСКОЕ РАСТВОРЕНИЕ И АНОДНУЮ АКТИВАЦИЮ АЛЮМИНИЯ В ВОДНЫХ СРЕДАХ

Ключевые слова: алюминий, электрохимическое растворение, анодная активация, потенциодинамическая поляризационная кривая, локальная (питтинговая) коррозия, ток и потенциал коррозии.

Исследовано электрохимическое поведение чистого алюминия (99,5%) в водных растворах электролитов, содержащих СІ-ионы. Изучено влияние природы и концентрации растворов на параметры анодной поляризации и коррозионные характеристики алюминиевого электрода.

Keywords: aluminium, electrochemical dissolution, anodic activation, potendiodynamic polarization curve, local (pitting) corrosion, corrosion current and potential.

The electrochemical behavior of pure aluminium (99,5%) in aqueous electrolyte solutions, containing Cl-ions has been investigated. The influence of the nature and solution concentration on the parameters of anodic polarization and corrosion characteristics of aluminium electrode has been also studied.

Введение

Электрохимическое поведение алюминия в водных средах в присутствии галогенид-ионов (в основном хлорид-ионов) подробно изучалось во многих работах [1-9] и продолжает оставаться предметом интенсивного исследования в настоящее время [10-15]. При анодной поляризации алюминия в таких средах наблюдается ряд особенностей [1-3,6-9]: 1) малая поляризуемость электрода; 2) так называемый дифференц-эффект отрицательный возрастание скорости выделения водорода саморастворения металла; 3) резкое возрастание тока при достижении некоторого потенциала (потенциал анодно-анионной активации), который существенное влияние оказывает концентрация активирующих анионов (при низкой концентрации галогенид-ионов электрод активируется локально, при высокой – полностью) [8]; 4) локальная депассивация с образованием питтингов на поверхности При алюминиевого электрода [7,16].ЭТОМ большинстве случаев анионную активацию рассматривают в связи с питтингообразованием [5-9], и резкое возрастание тока связывают с вытеснением галогенид-ионами пассивирующих молекул воды или ионов ОН [2,17-18].

Несмотря на широкий спектр исследований, механизм анодного растворения барьерных оксидногидроксидных слоев трактуется неоднозначно. В этой связи требуются дополнительные данные по влиянию величины рН и состава хлоридсодержащего раствора на скорость растворения алюминия, условия пассивации и локальной активации, вид и характер коррозионных поражений.

Целью данной работы является исследование влияния природы, состава и концентрации растворов, содержащих ионы СГ, на электрохимические и коррозионные характеристики алюминия.

Полученные данные представляют интерес как с точки зрения коррозионного поведения металла, так и при решении вопросов оптимизации анодного растворения алюминия в различных перспективных технологиях – химические источники тока, получение водорода, электрохимический синтез гидроксидных и

оксогидроксидных соединений алюминия как прекурсоров оксидной керамики, адсорбентов, носителей катализаторов.

Экспериментальная часть

В качестве рабочего образца был использован электрод из алюминия марки А5 (99,50 %) в виде пластины размером 1,5x4,5см с рабочей поверхностью $1~{\rm cm}^2$ (остальную поверхность изолировали коррозионно-стойкой эмалью ЭП-773).

Поляризационные измерения проводились в трехэлектродной электролитической ячейке (платиновый электрод в качестве вспомогательного, насыщенный хлоридсеребряный электрод марки ЭЛВ-1 (E=0,222B) в качестве электрода сравнения) при комнатной температуре (22-25°C) и свободном доступе воздуха в потенциодинамическом (скорость развертки потенциала 2 мВ/с) и гальваностатическом режимах с использованием потенциостата П-5848.

Поляризационные измерения сопровождались микроскопическими исследованиями состояния поверхности рабочего электрода до и после поляризации на металлографическом микроскопе Альтами МЕТ 5 (исследования в проходящем свете в светлом поле, в отраженном свете по методам светлого и темного поля и по методу поляризации), а также на сканирующем электронном микроскопе Evex Mini-sem 5×3000.

Электрохимические измерения, расчет коррозионных параметров, подготовку рабочего электрода проводили согласно стандартным методикам, изложенным в работах [19-20].

Результаты и их обсуждение

Известно [21], что кислотность раствора в значительной степени влияет на электрохимическое поведение алюминия: минимальная скорость его растворения наблюдается при рН 5-6 и возрастает в более кислых или более щелочных растворах. В связи с этим, в данном исследовании варьировали кислотность раствора (путем подкисления кислотой и подщелачивания щелочью) и проводили электрохимические измерения в 10-2 М NaCl при

четырех значениях рН (2.3, 5.5, 7.3, 9.9). Влияние рН на параметры анодной и катодной поляризации рабочего электрода в растворе хлорида натрия показано на рис.1. На основании поляризационных измерений (рис.1) рассчитывали электрокинетические параметры поляризации и коррозионные показатели алюминия (табл.1), в частности: тафелевские наклоны анодной и катодной реакций (коэффициенты β_a , β_k), значения поляризационного сопротивления (R_n), тока коррозии (j_{kop}) и потенциала коррозии (E_{kop}).

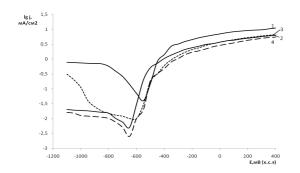


Рис. 1 — Потенциодинамические анодные и катодные поляризационные кривые алюминия A5 (99,5%) в 10^{-2} M NaCl при pH: 1-2.3; 2-5.5; 3-7.3; 4-9.9

Можно видеть (рис.1), что кинетика катодной и анодной реакций зависит от кислотности исследуемого раствора, причем в большей степени рН влияет на катодный процесс. Так, в кислой среде (рН 2.3) катодная плотность тока выше, чем в других средах (слабокислой, нейтральной и щелочной) соответствующих значениях потенциала (рис.1). Рост обусловлен протеканием катодного тока моноэлектронной реакции восстановления воды в нейтральной и щелочной среде и реакций протонного и мономолекулярного разряда в кислой среде [10]. Значения тафелевского наклона Вк (табл.1), особенно в кислой среде (рН 2.3), далеки от теоретически рассчитанных (-120 мВ/дек), по-видимому, за счет протекания в местах выделения водорода реакции взаимодействия гидроксида (образующегося спонтанно) с H⁺ с образованием Al³⁺ (согласно реакции протонного восстановления) [10]:

$$AI(OH_3) + 3 H^+ \leftrightarrow AI^{3+} + 3H_2O.$$
 (1)

Эта реакционная задержка, которую нельзя интерпретировать с точки зрения диффузионной кинетики, объясняет расхождения в значениях β_{κ} [10].

Кинетика анодного процесса также зависит от рН (рис.1), и в кислой среде (рН 2.3) параметры анодной реакции, так же как и катодной, отличаются от параметров, полученных в нейтральной и щелочной средах. Действительно, в условиях анодной поляризации непрерывно растет кислотная атака и растворение алюминия всегда протекает в соответствии с реакцией [10]:

$$AI \rightarrow AI^{3+} + 3e^{-}. \tag{2}$$

Приведенные в табл.1 данные, показывают, что величина рН после катодной поляризации в кислой среде практически не изменяется, слегка уменьшается в нейтральной и более значительно снижается в щелочной среде (на 0,8-0,9 единиц). После анодной

поляризации рН в кислых растворах хлорида натрия повышается (на 0,5-0,9 единиц), а в других – снижается: ~ на 2 единицы в нейтральной среде и более значительно (более 3 единиц) в щелочной среде (табл.1), в которой формирование оксидногидроксидной пленки завершается реакцией взаимодействия с ионами ОН по реакции [10]:

$$AI(OH_3) + OH \leftrightarrow AI(OH)_4$$
. (3)

Коррозионные показатели ($E_{\text{кор}}$, $j_{\text{кор}}$, $R_{\text{п}}$) также зависят от pH хлоридного раствора (табл.1, рис.2). С увеличением pH, при переходе от кислой среды к нейтральной и щелочной потенциал коррозии ($E_{\text{кор}}$) смещается в область более отрицательных значений на 50-80 и 100 мВ, соответственно (рис.2). С уменьшением pH, при переходе от щелочного и нейтрального раствора к кислому, плотность тока коррозии возрастает ~ в 10-14 раз (табл.1, рис.2).

Таблица 1 – Экспериментальные и расчетные значения электрохимических параметров алюминия в 10⁻² M NaCl

Электрокинетические	Значения рН			
и коррозионные параметры	2.3	5.5	7.3	9.9
-βк, мВ/дек	300	240	150	160
βа, мВ/дек	60	60	90	70
Екор, мВ	-550	-640	-600	-650
јкор (графическое)□,	31,6	5,0	7,9	2,5
мкА/см ²				
R _п , кОм	0,3	5,0	5,0	5,0
$j_{\text{кор}}$ (расчетное), мкА/см ²	63,4	4,3	5,7	4,2
рН до поляризации	2.3	5.5	7.3	9.9
рН после катодной	2.39	5.62	7.14	9.03
поляризации				
рН после анодной	2.81	6.40	6.37	6.49
поляризации				

 $\square_{j_{kop}}$ (графическое) — значение плотности тока коррозии, определенное методом экстраполяцией тафелевских участков поляризационных кривых:

 $j_{\text{кор}}$ (расчетное) — значение плотности тока коррозии, определенное методом поляризационного сопротивления

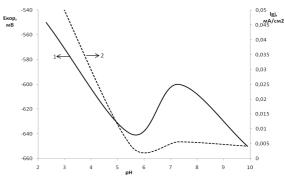


Рис. 2 — Влияние рН раствора 10^{-2} M NaCl на коррозионные характеристики алюминия: 1 — потенциал коррозии ($\mathsf{E}_{\mathsf{кор}}$); 2 — плотность тока коррозии ($\mathsf{j}_{\mathsf{кор}}$)

Хлорид-ионы являются классическими и типичными активаторами (депассиваторами) анодного растворения алюминия. При такой анодноанионной активации происходит разрушение оксидно-гидроксидной пленки на поверхности

электрода, и растворение часто становится локальным [16]. При этом увеличивается скорость выделения газообразного водорода, которое связывают с взаимодействием оголенной поверхности алюминия с раствором, а также скорость саморастворения электрода [9].

При взаимодействии с оксидно-гидроксидным слоем хлорид-ионы частично растворяют его, создавая условия для проникновения компонентов электролита к поверхности металла. СГ-анионы адсорбционно вытесняют или частично замещают на поверхности металла пассивирующие частицы, в частности кислород, с образованием поверхностных комплексов, способных переходить в раствор [5]. Однако такая реакция становится возможной только при достижении потенциала анионной активации и на участках поверхности, где концентрация хлорид-иона достигает некоторого критического значения и зависит от природы самого металла и раствора [5].

Согласно литературным данным [4-9,22] и результатам электрохимических исследований авторов данной статьи [19,23-25], в водных хлоридсодержащих средах алюминий подвергается локальной активации в диапазоне концентраций 10^{-3} -1,0 моль/л NaCl и скорость коррозионного разрушения зависит от концентрации хлорида. Это подтверждается результатами микроскопических исследований поверхности алюминиевого электрода после снятия анодной поляризационной кривой в хлоридных растворах. При длительной анодной поляризации (диапазон изменения потенциала от равновесного до 1,0-1,5 В) на поверхности образцов формируется неравномерная шероховатая пленка с блестящим питтингом, заметным при визуальном осмотре. Характерно, что образующиеся при анодной поляризации питтинги вытянуты в направлении прокатки и имеют примерно одинаковую глубину (до 10 мкм). Некоторые питтинги представляют собой язвенные разрушения с сильно растравленными краями и шероховатой внутренней поверхностью. разрушений наблюдается Такой характер поверхности образцов, поляризованных в 10⁻² М NaCl во всем исследуемом диапазоне рН (рис.3), т.е. в данных условиях поляризации обусловлен природой и концентрацией аниона и не зависит от рН раствора.

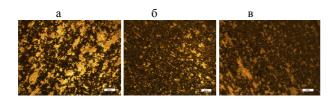


Рис. 3 — Микрофотографии (увеличение 60) поверхности алюминия после анодной поляризации в 10^{-2} M NaCl при pH: a - 2.3; 6 - 7.3; B - 9.9

Таким образом, анодное растворение алюминия в СГ-содержащих растворах сопровождается локальной депассивацией с образованием питтингов на поверхности металла [7]. Вследствие гидролиза ионов АІ³⁺ (реакция 4) происходит подкисление прианодного пространства, а также электролита внутри и около

питтинга [7]. Al³⁺ +yH₂O \rightarrow [Al(OH)_n(H₂O)_m]³⁻ⁿ+nH⁺+(y-m)H₂O. (4)

Депассивация начинается на активных участках поверхности металла, далее в этот процесс вовлекаются и менее активные участки [11]. В активирующих анионах, таких как СГ, процесс депассивации обратим [7,11]. Согласно [26], эта обратимость утрачивается при взаимодействии активирующих анионов c поверхностью пассивирующего оксида локально И депассивируемые участки становятся местом зарождения питтингов.

Отрицательный дифференц-эффект при анодной поляризации связывают с кислотной коррозией AI в активном питтинге [6-7]

$$2AI + 6H_3O^+ \rightarrow 2AI^{3+} + 3H_2 + 6H_2O,$$
 (5)

с вытеснением СГ-ионами пассивирующих молекул воды или ионов ОН, адсорбированных на поверхности алюминия [18], а также с наводороживанием алюминия с образованием и последующим разложением поверхностных гидридных фаз [7].

Согласно [7], гидрид Al присутствует в местах локальной депассивации анода (питтинги) и его образование происходит вследствие катодного процесса:

$$AI + 3H_2O + 3e^{-} \leftrightarrow AIH_3 + 3OH^{-}$$
. (6)

Будучи термодинамически неустойчивым при потенциалах анодного растворения алюминия, AIH₃ может анодно окисляться или гидролизоваться до AI(OH)₃. Суммарная реакция саморастворения AI сводится к простому уравнению [7]:

$$2AI + 6H2O = 2 AI(OH)3 + 3H2.$$
 (7)

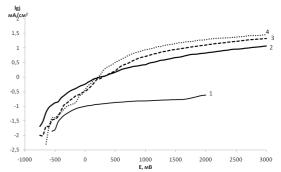


Рис. 4 — Потенциодинамические анодные поляризационные кривые алюминия A5 (99,5%) в 0,1 М Na₂SO₄ после 1 ч предварительной анодной поляризации в 0,1 М NaCl при плотности тока, мA/cм²: 1-0; 2-5, 3-10, 4-15

Присутствие поверхности рабочего на образца гидридной фазы оказывает влияние на анодное электрода. Ha поведение рис.4 представлены поляризационные кривые, снятые в 0,1 M Na₂SO₄, после предварительной анодной гальваностатической поляризации образцов в растворе хлорида натрия (10^{-1} моль/л) токами 5, 10, 15 мА/см² и их последующей выдержке на воздухе более суток. Такая предварительная подготовка приводила к появлению гидрида на поверхности алюминия. Можно видеть (рис.4), что значения предельного тока растворения электродов с гидридной фазой значительно выше, чем в случае образцов без предварительной обработки. С ростом тока предварительной поляризации в 0,1~M~NaCl увеличивается количество гидрида и ток растворения в $0,1~M~Na_2SO_4$ (рис.4).

Электрохимические измерения были дополнены микроскопическими исследованиями (рис.5). поверхности образцов наблюдаются обширные очаги коррозионного разрушения, занимающие 65-75 % поверхности. исследуемой Анализ полученных результатов (рис.5) показал наличие язвенной коррозии, преимущественно ориентированной по границам зерен металла, т.е. можно говорить о межкристаллитной коррозии на поверхности алюминия. В литературе [27] подобный тип локальной коррозии получил название «кристаллографический питтинг». Согласно [27], локальная (питтинговая) коррозия на поверхности алюминия зарождается и развивается в растворах, содержащих одновалентные анионы (это объясняется особенностями одностадийного растворения), и обычно происходит кристаллографическим плоскостям (100). повышением электродного потенциала и ростом концентрации кристаллографическая форма питтинга видоизменяется. По мнению [28], межкристаллитная коррозия чистого алюминия и малолегированных сплавов имеет кристаллографическую форму и особенностями определяется процесса рекристаллизации. В этом случае высокоугловые границы растущих рекристаллизованных накапливают значительное число вакансий, которые коагулируют. Это приводит термодинамической неустойчивости границ, вблизи которых электродный потенциал приближается к потенциалу коррозии в активном состоянии [28].

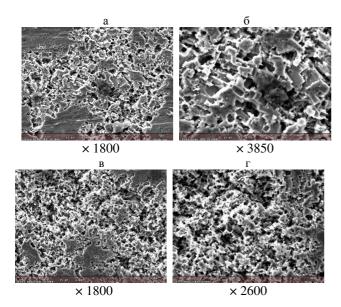


Рис. 5 — Микрофотографии поверхности алюминия после анодной поляризации в 0,1 М Na_2SO_4 после 1 ч предварительной анодной поляризации в 0,1 М NaCl при плотности тока, MaCl а,6 – 5; в,г – 15

Согласно [8], активное состояние алюминия при анодной поляризации возникает при наличии значительного внешнего поляризующего тока, приводящего к заметному омическому падению потенциала в порах оксидного слоя. И характер разрушения поверхности электрода определяется соотношением скоростей растворения дна поры и ее образованных оксидно-гидроксидной стенок, При ЭТОМ пленкой. переход алюминия активированное состояние определяется адсорбированными процессами на границе раздела металл-раствор. И в зависимости от исходной структуры пленки, концентрации хлорид-ионов активация может сопровождаться различным характером разрушения электрода [8].

Таким образом, в работе рассмотрены вопросы, связанные с условиями нарушения пассивности и коррозионного поражения алюминиевого электрода в водных растворах в присутствии хлорид-ионов.

Литература

- 1. Электрохимическое поведение алюминия в водном растворе хлористого натрия /А.Л. Ротинян [и др.] //Журнал прикладной химии. 1977. Т. 50, № 11. С. 2499-2502.
- 2. К теории анодно-анионной активации анодноокисленного алюминия /Давыдов А.Д. [и др.] //Электрохимия. – 1978. – Т. 14, № 6. – С. 901-903.
- 3. The effect of Anions on the Electrochemical Behavior of Aluminium /Dražić D.M. [etc.] //Electrochim. Acta. − 1983. − V. 28, № 5. − P. 751-755.
- Изотова С.Г. Анодная поляризация алюминия в растворах, содержащих NaCl и NaOH /C.Г. Изотова, В.В. Сысоева, Е.Д. Артюгина //Журнал прикладной химии. 1985. Т. LVIII, № 11. С. 2499-2502.
- Самарцев В.М. Анионная активация и саморастворение алюминия в хлоридсодержащих средах /В.М. Самарцев, И.Д. Зарцын, Е.А. Пономарева //Тез.докл. VI Всесоюз. конф. молодых ученых и специалистов по физ. химии. Москва, 1990. С.68.
- 6. Вращающийся конический электрод с кольцом для исследования отрицательного дифференц-эффекта на алюминиевом электроде /В.М. Самарцев [и др.] //Защита металлов. 1991. Т. 27, № 2. С. 197-201.
- 7. Назаров А.П. Анодное растворение алюминия в присутствии галогенид-ионов /А.П. Назаров, А.П. Лисовский, Ю.Н. Михайловский //Защита металлов. 1991. Т. 27, № 1. С.13-19.
- 8. Анионная активация алюминия при анодном растворении в галидсодержащих средах /В.М. Самарцев [и др.] //Защита металлов. 1992. Т. 28, № 5. С. 760-767.
- 9. Зарцын И.Д. Кинетика выделения водорода и изменение анодного потенциала алюминия при активации хлорид-ионами /И.Д. Зарцын, В.М. Самарцев, И.К. Маршаков //Защита металлов. 1994. Т. 30, № 1. С. 45-47.
- Amocrane S. Electrochemical influence of the nature and composition of halides on Al-12Si /S. Amocrane, M.A. Lanjouzi //J. Solid. State Electrochem. – 2007. – № 11. – P. 1655-1661.
- 11. О механизме анодного окисления алюминия в водных растворах электролитов / И.Л. Батаронов [и др.] //International Scientific Journal of Alternative Energy and Ecology. 2007. № 1 (655). С. 118-126.
- 12. Лукащук Т.С. Исследование влияния состава солевых электролитов на коррозионное и анодное поведение

- алюминия /Т.С. Лукащук, В.И. Ларин //Вісник Харківського національного університету. 2008. № 820. Хімія. Вип. 16 (39) С. 328-331.
- 13. Борисенкова Т.А. Анодное поведение алюминия в нейтральных электролитах различного анионного состава /Т.А. Борисенкова, С.А. Калужина //Конденсированные среды и межфазные границы. 2009. Т. 11, № 2. С. 106-110.
- 14. Чернова Г.П. Влияние хлорид-ионов на электрохимические свойства анодированных алюминиевых сплавов АВ и Д16 в водном и водно-глицериновом растворах сульфата натрия /Г.П. Чернова, Л.П. Корниенко //Физикохимия поверхности и защита материалов. 2010. Т.46, № 6. С. 651-656.
- 15. Борисенкова Т.А. Пассивация и локальная активация алюминия в водных растворах под действием неорганических и органических добавок /Т.А. Борисенкова, С.А. Калужина //Конденсированные среды и межфазные границы. 2011. Т. 13, № 2. С. 132-136.
- 16. Кеше Г. Коррозия металлов. Физико-химические принципы и актуальные проблемы: Пер. с нем. /Под ред. Я.М. Колотыркина. М.: Металлургия, 1984. 400 с.
- 17. Попов Ю. А. К теории развития питтингов /Ю.А. Попов, Ю.В. Алексеев, Я. М. Колотыркин //Электрохимия. 1978. Т. XIV, № 9. С. 1447-1450.
- 18. Кузнецов Ю.И. О депассивации алюминия в нейтральных растворах /Ю.И. Кузнецов, Л.И. Попова, Ю.Б. Макарычев //Журнал прикладной химии. 1986. Т.LIX, № 5. С.1005 1011.
- 19. Григорьева И.О. Электрохимическое поведение алюминия в электролитах, содержащих сульфат и хлорид натрия /И.О. Григорьева, А.Ф. Дресвянников //Вестник Казан. технол. ун-та. 2011. № 11. С. 149-155.
- 20. Григорьева И.О. Анодное и коррозионное поведение алюминия в нитратсодержащих электролитах /И.О.

- 21. Герасимов В.В. Коррозия алюминия и его сплавов /В.В. Герасимов. М.: Металлургия, 1967. 114 с.
- 22. Минакова Т.А. Пассивация и локальная анодная активация алюминия в средах различного состава при повышенных температурах: автореф. дис... канд. хим. наук /Минакова Татьяна Анатольевна. Воронеж: ФГАОУ ВПО «Южный федеральный университет», 2013. 18 с.
- 23. Григорьева И.О. Анодное поведение алюминия в нейтральных электролитах /И.О. Григорьева, А.Ф. Дресвянников //Вестник Казан. технол. ун-та. 2010. № 7. С. 153-161.
- 24. Григорьева И.О. Коррозионно-электрохимическое поведение алюминия в хлоридсодержащих электролитах /И.О. Григорьева, А.Ф. Дресвянников //Вестник Казан. технол. ун-та. 2011. № 11. С. 160-166.
- 25. Григорьева И.О. Влияние состава солевых хлоридсодержащих электролитов на электрохимическое и коррозионное поведение алюминия /И.О. Григорьева, А.Ф. Дресвянников, Г.Т. Ахмадишина //Вестник Казан. технол. ун-та. 2012. Т.15, № 12. С. 44-47.
- 26. Фрейман А.И. Стабильность и кинетика развития питтингов /А.И. Фрейман //Итоги науки и техники. Коррозия и защита от коррозии. 1985. Т.ХІ. С. 3-71
- 27. Синявский В.С. Закономерности развития питтинговой коррозии алюминиевых сплавов и ее взаимосвязь с коррозией под напряжением //Защита металлов. $2001. T.37. N \cdot 5. C.521-530.$
- 28. Синявский В.С., Уланова В.В., Калинин В.Д. особенности механизма межкристаллитной коррозии алюминиевых сплавов //Защита металлов. 2004. T.40. N 5. C. 537-546.

[©] **И. О. Григорьева** – канд. хим. наук, доцент кафедры технологии электрохимических производств КНИТУ, iren-grigor@mail.ru; iren@kstu.ru; **А. Ф. Дресвянников** – д-р хим. наук, профессор кафедры аналитической химии, сертификации и менеджмента качества КНИТУ, alfedr@kstu.ru; **Л. Р. Хайруллина** – магистрант кафедры технологии электрохимических производств КНИТУ.