ПРОЦЕССЫ И АППАРАТЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

УДК 66.069.832

В. В. Алексеев, И. И. Поникаров

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПЫЛЕУЛАВЛИВАНИЯ ЦИКЛОНОВ В ПРОИЗВОДСТВЕ СУХОЙ МОЛОЧНОЙ СЫВОРОТКИ

Ключевые слова: теплогенератор, насос-дозатор, циклон, просеиватель.

В производстве сухой молочной сыворотки нашли широкое применение основные циклоны и циклоны для пневмотранспорта. Существенным недостатком таких циклонов является низкая эффективность улавливания частиц пыли размером менее 10 мкм, в связи с чем их использование ограничивается предварительной очисткой [1]. Поэтому в данной статье для повышения эффективности пылеулавливания циклонов в производстве сухой молочной сыворотки проведен анализ их работы и даны рекомендации по их совершенствованию и разработке нового оборудования.

Keywords: heatgenerator, pump-batcher, cyclone, proseivatel.

In production of dry whey the main cyclones and a cyclone the pneumoconveyor found broad application. Essential lack of such cyclones is low efficiency of catching of particles of a dust less than 10 microns in size in this connection their use is limited to preliminary cleaning [1]. Therefore in this article for increase of efficiency of a dust removal of cyclones in production of dry whey the analysis of their work is carried out and recommendations about their improvement and development of the new equipment are made.

Введение

На кафедре машин и аппаратов химических производств КНИТУ ведется разработка циклонного оборудования для технологических и санитарных процессов, в которых образование жидких шламовых отходов недопустимо или когда переработка последних экономически не рентабельна.

Традиционный способ пылеулавливания (см. рис. 1) состоит в том, что пылегазовая смесь вводится в закручивающее устройство 1, приобретает вращательно-поступательное движение в кольцевом канале между внутренней стенкой циклона 2 и наружной стенкой выхлопной трубы 3 по нисходящей винтовой спирали.

Твердые частицы под действием центробежной силы перемещаются на периферию к стенке корпуса циклона и далее движутся по цилиндрической и конической стенке 4 вниз и выводятся из разгрузочного штуцера 5 в бункер (на схеме не показан).

Внутренний восходящий вихрь формируется внутри бункера и, взаимодействуя с внешним пылегазовым неочищенным, движется к выхлопному патрубку 3.

На наш взгляд, в процессе взаимодействия внешнего нисходящего вихря с внутренним восходящим при определенных расходных и конструктивных параметрах циклона происходит проникновение мелких твердых частиц из внешнего концентрированного во внутренний очищенный. Вынос твердых частиц в выходной патрубок снижает эффективность пылеуловителя.

В данной работе делается попытка дать анализ влияния аэродинамической обстановки в зоне взаимодействия восходящего очищенного и нисходящего неочищенного вихрей на эффективность

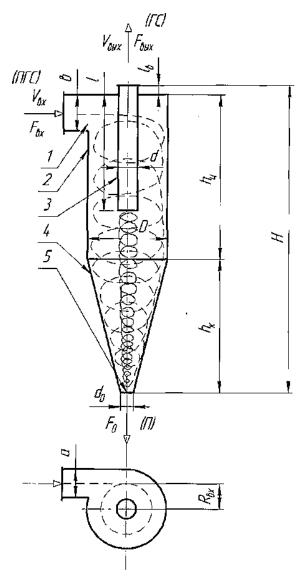


Рис. 1 – Схема противоточного циклона

пылеулавливания на основе рассмотрения расходных и конструктивных параметров отечественных циклонов. Наибольшее применение в практике отечественного пылеулавливания находят основные типы циклонов: НИИОГАЗ (ЦН -11, ЦН - 15, ЦН - 15У, ЦН - 24, СДК - ЦН- 33, СК - ЦН - 34, СК - ЦН - 40 и СК - ЦН - 34М), СИОТ и ВЦНИИОТ [1, 3 - 5].

Закрученный поток, формируемый входным закручивающим устройством, является трехмерным и для его описания необходимо использование локальных параметров (поля скоростей V_x - осевой, V_ϕ - окружной и V_r - радиальной компонент полной скорости V_x , а также поле давления - P_y) и интегральных параметров (количества движения K_y и момента количества движения M_y). Наиболее важным из них следует считать момент количества движения относительно оси циклона, который определяет основные особенности течения закрученного потока.

Действительный безразмерный параметр крутки нисходящего вихря θ рассчитывался по формуле [2]:

$$\theta = \frac{M}{K \cdot R} = 2\pi \cdot \rho \cdot \int_{r_1}^{R} v_{\varphi} \cdot v_{x} \cdot r^{z} \cdot \frac{dr}{2\pi \int_{r_1}^{R} \rho \cdot V_{x}^{z} \cdot r \cdot dr \cdot R},$$

где $\mathbf{r_1} = d/2$ — наружный радиус выхлопной трубы, м; R = D/2 - внутренний радиус циклона, м; ρ - плотность газа, кг/м³.

Расчетный безразмерный параметр крутки на входе в циклон $\theta_{\text{вх}}$, вычисленный по средним параметрам θ , определялся по выражению [9]:

$$\boldsymbol{\theta}_{\rm BX} = \mathbf{M}_{\rm BX}/(K_{\rm cp} \bullet R) = (F_{\rm K}/F_{\rm BX})^{\bullet} (R_{\rm BX}/R) = \overline{\mathbf{R}}_{\rm EX}/K_{\rm T}, \eqno(2)$$

где $F_{\kappa}=\pi$ $(D^2\text{-}d^2)/4$ - площадь кольцевого сечения, M^2 ; $F_{BX}=a^{\bullet}$ в - площадь входного патрубка, M^2 ; R_{BX} - радиус входного момента количества движения, M; $K_{T}=F_{BX}$ $/F_{\kappa}$ -конструктивный параметр крутки; $\overline{\mathbf{R}}_{\Xi X}\!=\!R_{BX}/R$ - относительный радиус входного момента количества движения.

Основными конструктивными параметрами, влияющими на аэродинамику, гидравлическое сопротивление и эффективность пылеулавливания являются: конструктивный параметр крутки K_{τ} ; кольцевой параметр $\overline{\mathbf{d}} = d/D$, относительные высота $\overline{\mathbf{B}} = B/D$ и ширина $\overline{\mathbf{a}} = a/D$ тангенциального входа и относительные высоты выхлопной трубы $\overline{\mathbf{l}} = I/D$, цилиндрической $\overline{\mathbf{h}}_{\mu} = h_{\mu}/D$ и конической $\overline{\mathbf{h}}_{\kappa} = h_{\kappa}/D$ частей циклона, а также относительный диаметр разгрузочного штуцера $\overline{\mathbf{d}}_{0} = d_{0}/D$.

Режимными параметрами процесса в циклоне служат скорость движения пылегазовой смеси на входе V_{EX} , распределение скоростей в зонах кольцевого сечения, в цилиндрической и конической частях, а также в выхлопном патрубке.

Анализ влияния режимных параметров на эффективность пылеулавливания

Скорость движения газа во входном патрубке $(V_{\mbox{\tiny BX}})$ в зависимости от конструктивных параметров

противоточных циклонов различной модификации варьируется в пределах от 15 до 25 м/с [3-5]. С увеличением скорости движения газа увеличивается эффективность пылеулавливания и растет гидравлическое сопротивление процесса. Однако, начиная с некоторой скорости, дальнейшее ее увеличение приводит к снижению эффективности пылеулавливания и увеличению сопротивления, что объясняется аэродинамической структурой потока в циклоне.

Распределение скоростей в зоне кольцевого течения циклона

Авторы [6] исследовали аэродинамическую структуру потока в кольцевых каналах и трубах при значениях безразмерного параметра крутки на входе $\theta_{\rm BX} = 2,1 \div 8,4$ в автомодельном режиме. На рис. 2 представлены графики зависимости $\overline{V}_{0} = V_{0}/V_{cp}$ и V_{x} $= \overline{V}_{x}/V_{cp}$ от безразмерного радиуса r = r/R, где V_{cp} - среднерасходная скорость движения газа в кольцевом канале или в трубе. Как видно из графика, интенсивная крутка является причиной образования обратных токов при $\bar{r} \le 0.4 \div 0.5$. А при значениях безразмерного параметра крутки на входе $\theta_{\text{вх}} >$ 8÷10 обратные токи становятся более интенсивными и могут занимать большую область значений ₹ ≤ 0,6÷0,7. Поэтому образование обратных восходящих токов в нисходящем вихре на выходе из кольцевого канала, по-видимому, вызывает транспорт мелких частиц из внешнего вихревого потока во внутренний восходящий и их унос в выхлопном патрубке. Чем более интенсивный сток твердых частиц, а этому подвержены более мелкие частицы диаметром $d_{\scriptscriptstyle \rm H}$ < 5÷10 мкм, тем более уменьшается как общая η, так и фракционная η_1 эффективность пылеулавливания. Поэтому при организации процесса пылеулавливания в циклонах (при оптимальных геометрических параметрах) безразмерный параметр крутки на входе $\theta_{\text{вх}}$ должен выбираться в пределах от 5 до $8 \div 10$.

Сложная аэродинамическая структура потока в противоточном циклоне создается из - за конструктивных особенностей различных зон пылеулавливания: входной зоны, кольцевой, цилиндрической и конической. Пылеулавливание и пылеудержание в каждой из зон определяется не только дисперсным составом и плотностью частиц пыли, но и аэродинамическим распределением скоростей V_{ϕ} , V_{x} , V_{r} газового потока и статическим давлением P.

Во входной зоне начальное пылеулавливание определяется геометрией закручивающего устройства: конструктивным параметром крутки $K_{\scriptscriptstyle T}$, кольцевым параметром \overline{d} и относительной высотой выхлопного патрубка \overline{I} .

В кольцевом канале с относительной высотой $\overline{\mathbf{h}}_{_{\mathrm{II}}}$ идет трансформация поступательного движения во вращательно - поступательное с распределением скоростей, подобным распределению скоростей, изображенному на рис. 2. Конструктивными параметрами кольцевого канала являются кольцевой параметр $\overline{\mathbf{d}}_{_{\mathrm{II}}}$ и относительная высота $\overline{\mathbf{h}}_{_{\mathrm{II}}}$. Кольцевой параметр $\overline{\mathbf{d}}_{_{\mathrm{II}}}$ у отечественных циклонов меняется от

0,22 до 0,59 (см. табл. 1 и табл. 2). При уменьшении относительного диаметра выхлопной трубы $\overline{\mathbf{d}}$ за счет повышения скорости движения газа в ней сильно возрастает гидравлическое сопротивление в циклоне. Как правило, при уменьшении кольцевого параметра $\overline{\mathbf{d}}$ меняется и относительная высота $\overline{\mathbf{I}}$.

В цилиндрической зоне пылеулавливания статическое давление под действием тангенциальной составляющей скорости V_{ϕ} падает от его периферии

к центру и на оси циклона создается сильное разряжение, которое благоприятствует образованию внутреннего восходящего вихря. Во внешнем нисходящем вихре, направленные во внутреннюю сторону сжимающие усилия находятся в равновесии с центробежными силами. Пограничный пылегазовый слой у стенки циклона движется вращательнопоступательно вниз с меньшей скоростью и испытывает меньшие центробежные силы.

Таблица 1 - Относительные размеры высокопроизводительных циклонов типа ЦН с постоянным отношением d/D=0,59

Тип аппарата	α, град	a/D	B/D	I/D	h _{II} /D	h _K /D	I _B /D	d ₀ /D	H/D
ЦН-11	11		0,48	1,56	2,06	2,0	0,3		4,36
ЦН-15	15	26	0,66	1,74	2,26	2,0	0,3	0,4	4,56
ЦН-15У	15	0,2	0,66	1,50	1,51	1,5	0,3	0,3÷	3,31
ЦН-24	24		1,11	2,11	2,11	1,75	0,4		4,26

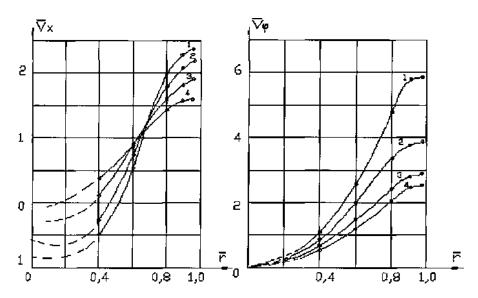


Рис. 2 - Графики зависимости относительных \overline{V}_{ϕ} и \overline{V}_{x} составляющих скорости от \overline{r} при значениях $\theta_{\text{вх}}$: 1 - 8,4; 2 - 4,4; 3 - 2,75; 4 - 2,1

Таблица 2 - Относительные размеры высокоэффективных циклонов типа СК и СДК

Тип аппа-	d/D	a/D	в/D	1/D	h _{II} /D	h _K /D	I_B/D	d ₀ /D	H/D
СК-ЦН-	0,22	0,18	0,40	0,70	0,40	2,60	0,30	0,18	3,30
СДК-ЦН-33	0,33	0,26	0,535	≤0,835	0,535	3,0	0,2÷0,3	0,33	≤3,84
СК-ЦН-34	0,34	0,21	0,515	≤0,815	0,515	2,11	0,2÷0,3	0,23	≤2,93
СК-ЦН-40	0,40	0,15	0,38	0,70	0,535	3,0	0,3	0,20	3,835

В конической зоне пылеулавливания у стенки увеличивается перепад давления, и сжимающее газовой поток усилие становится намного больше центробежной силы, и поток в виде вторичного восходящего вихря движется внутрь, транспортируя с собой много мелких частиц пыли. Крупные частицы при своем движении отбрасываются к стенке аппа-

рата и уносятся нисходящим вихрем вниз к пылеосадительному бункеру.

Конструктивными параметрами конической зоны являются относительная высота $\mathbf{\bar{h}}_{\kappa}$ и диаметр разгрузочного штуцера $\mathbf{\bar{d}}_{0}$.

В табл. 3 представлены для различных типов циклонов значения конструктивных параметров: $F_{\text{вх}}/D^2$, $F_{\text{к}}/D^2$, $K_{\text{т}}$, $\overline{R}_{\text{вх}}$, $\theta_{\text{вх}}$, рассчитанных по уравнению (2) и коэффициента гидравлического сопротивления ζ_0 для циклона диаметром D=500 мм [5].

Анализ данных этой таблицы показывает, что для высокопроизводительных циклонов возможно повышение эффективности их работы за счет изменения конструктивных параметров - уменьшения площади входного патрубка $F_{\rm BX}$ и увеличения радиуса $\overline{R}_{\rm BX}$, что позволит увеличить безразмерный входной момент количества движения $\theta_{\rm BX}$ до 5÷8. Также

возможно некоторое повышение эффективности пылеулавливания высокоэффективных циклонов СДК - ЦН - 33 и СК - ЦН - 34 до значений $\theta_{\rm BX}$ = $8\div10$. Как видно из этой таблицы, большему значению коэффициента гидравлического сопротивления ζ_0 соответствует и большее значение безразмерного параметра крутки на входе в циклон $\theta_{\rm BX}$, что подтверждает предположение о возможности рассмотрения эффективности пылеулавливания по параметру $\theta_{\rm BX}$ для расчета аналогичного циклонного тепломассообменного и газо-пылеулавливающего оборудования [7,9].

Таблица 3 - Расчетные значения конструктивных параметров высокопроизводительных и высокоэффективных циклонов (для $R_{\rm Bx} = (D+a)/2$)

Тип	ЦН-11	ЦН-15	ЦН-15У	ЦН-24	СК-ЦН-	СК-ЦН-	СК-ЦН-	СК-ЦН-
циклона					34	34M	40	33
F_{BX}/D^2	0,096	0,132	0,132	0,222	0,110	0,072	0,057	0,0141
F_K/D^2		0	,512		0,694	0,747	0,659	0,697
K _T	0,188	0,258	0,258	0,433	0,158	0,096	0,086	0,202
$\overline{\mathbf{R}}_{_{\mathrm{BX}}}$		1-8	=0,74		1,214	1,18	1,15	1,264
$\theta_{\scriptscriptstyle \mathrm{BX}}$	3,936	2,868	2,868	1,709	7,68	12,29	13,36	6,25
ζ_0	250	163	170	80	1150	2000	-	600

Анализ работы циклонов типа СИОТ и ВЦНИИОТ, выполненный авторами [3,4] показал, что по степени очистки они равноценны циклону ЦН - 15 и уступают циклону ЦН - 11.

Выводы

- 1. Для совершенствования аппаратурного оформления существующих отечественных противоточных циклонов и разработки новых предлагается анализ конструктивных и расходных параметров осуществлять по безразмерному параметру крутки $\boldsymbol{\theta}_{\text{nv}}$.
- 2. Оптимальными значениями параметра крутки, при которых не образуются интенсивные обратные токи, способствующие транспорту частиц пыли в выхлопную трубу являются значения $\theta_{\text{вх}} = 5 \div 8 \ (10)$.
- 3. При разработке новой конструкции циклона или вихревого пылеуловителя необходимо исследовать аэродинамическую структуру пылегазовой смеси.
- 4. На основе анализа работы противоточных циклонов на кафедре машин и аппаратов химических производств КНИТУ разработан вихревой пылегазоразделитель (ВПГР), обладающий повышенной эффективностью пылеулавливания.

Литература

- 1. Газоочистное оборудование. Циклоны. Каталог. М.: ЦИНИТИхимнефтемаш, 1977. 21с.
- 2. А.А. Халатов, В.К. Щукин. *Теплообмен, массообмен и гидродинамика закрученных потоков в осесимметричных каналах.* М.: Машиногстроение, 1982. 200 с.
- 3. П.А. Коузов, А.Д. Мальгин, Г.М. Скрябин, *Очистка от пыли газов и воздуха в химической промышленности*. Химия, Москва, 1982. 256 с.
- 4. Г.М. Алиев. *Техника пылеулавливания и очистки промышленных газов: Справочник.* Металлургия, Москва, 1986. - 544 с.
- Справочник по пыле- и золоулавливанию / М.И. Биргер [и др.]; под ред. А.А. Русанова. - 2-е изд. М.: Энергоатомиздат, 1983. - 312 с.
- 6. Х.О. Нурсте, Ю.В. Иванов, Х.О. Луби, *Теплоэнергети-ка*, №1, 37 39 (1978).
- 7. Л.Н. Москалев, С.И. Поникаров, И.И. Поникаров, В.В. Алексеев. *Вест. Казан. технол. ун-та*, **15**, 10, 240 242 (2012).
- 8. В.В. Алексеев, И.И. Поникаров, П.В. Алексеев. *Вест. Казан. технол. ун-та*, **16**, 20, 220 223 (2013).
- 9. В.В. Алексеев, П.В. Алексеев, И.И. Поникаров. *Вест. Казан. технол. ун-та*, **16**, 21, 218 220 (2013).

[©] В. В. Алексеев – канд. тех. наук, доц. каф. машин и аппаратов химических производств КНИТУ, valexeevtt@mail.ru; И. И. Поникаров – д-р тех. наук, профессор той же кафедры, советник ректората.