3. Т. Динь, С. А. Бахтеев, Р. А. Юсупов

УЧЕТ КОЛЕБАНИЙ рН В СИСТЕМЕ РЬ(II)-H₂O-OH⁻ ПРИ ПОТЕНЦИОМЕТРИЧЕСКОМ ТИТРОВАНИИ

Ключевые слова: равновесия, водные растворы, потенциометрическое титрование, соединения свинца.

Предложена методика описания колебаний значений pH раствора при потенциометрическом титровании системы Pb(II)— H_2O —OH.

Keywords: equilibriums, aqueous solution, potentiometric titration, lead.

It has been proposed the method for predicting the chemical composition of the compounds formed in the Pb(II)- H_2O -OHF system.

Введение

Система, образованная смешением водного раствора соли свинца со щелочью, может находиться в состоянии, достаточно далеком от истинного равновесия. Отклонение от истинного равновесия определяется эффектами «памяти» раствора [1] и возможностью состояния системы в «колебательном режиме», кроме того, результаты синтеза кроме вышеуказанных эффектов сильно зависят от концентрации реагентов и температуры растворов. Таким образом, исследование данной системы представляет интерес для достижения воспроизводимых результатов при синтезе целевых соединений [2].

Экспериментальная часть

Для приготовления растворов Pb(II) концентрации 0,1 моль/л использована соль Pb(NO₃)₂ «ч», которая растворялась в дегазированной дистиллированной воде. Раствор титранта готовился путем растворения неточной навески реактива NaOH «хч» в дистиллированной воде с последующей его стандартизацией раствором HCI, приготовленного в свою очередь по фиксаналу.Проводилось потенциометрическое титрование раствора Pb(II) с использованием потенциометра «рH-150». Интервал добавления порций титранта составлял 30 с. Для перемешивания раствора использована магнитная мешалка «ММ1». Результат титрования показан на рис.1.

Рис. 1 - Потенциометрическое титрование раствора Pb(II) стандартным раствором NaOH. $C_{Pb(II)} = 0,100$ моль/л, $C_{NaOH} = 0,100$ моль/л. n — отношение числа молей добавленного NaOH κ числу молей Pb(II)

В области значений рН раствора, отмеченных крестиками (рис. 1) был синтезирован осадок на воронке Шота с использованием водоструйного насоса и колбы Бюхнера при небольшом промывании дистиллированной водой. Далее осадок был высушен при 80°С и проанализирован методом ТГА, результаты которого представлены на рис.2 и в табл.1.

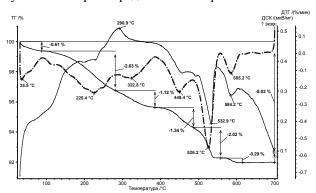


Рис. 2 - Кривая потери массы осадка по данным ТГА

Таблица 1 - Определение состава осадков по данным ТГА. Остаток после ТГА PbO (массикот)

Удаляемые	Массовая	Предполагаемое	Массовая доля
при ТГА	доля потери	исходное со-	предполагаемого
соединения	массы, %	единение	исходного со-
			единения, %
Н₂О гигр	0,32	H ₂ O	0,22
Н ₂ О из	2,29	H ₂ O	2,29
внутренней			
сферы			
1/2H ₂ O	0,4	Pb(OH) ₂	63,9
1/2H ₂ O	1,55		
1/2H ₂ O	2,82		
NO ₂	4,76	Pb(NO ₃) ₂	34,27
Остаток	87,98	PbO	0

Обсуждение результатов

На рис. 1 видны колебания pH раствора с различной амплитудой. Их периодичность достаточно хорошо совпадает с периодичностью n = X/5, где X=1÷8. Рассмотрим участок перехода осадка 1 (обозначено крестиками) в осадок 2 (обозначено треугольником). Можно предложить следующий механизм возникновения колебаний: осадок полиядерной формы, образованный за счет мостиковых связей из молекул воды, в ходе титрования переходит в

полиядерную форму, образованную за счет ионов гидроксила при этом не изменяется структура соединения. Колебание рН раствора вначале определяется избыточным сдвигом рН в щелочную область (см. рис.1). При этом область образования осадка 1 расширяется вследствие отсутствия зародышей осадка 2 и затем после образования зародышей осадка 2 смещается обратно в кислую область. Причиной постоянного подкисления раствора при отсутствии или наличии титрования раствором NaOH является внутримолекулярный гидролиз осадка 1 и переход его в осадок 2. При этом соотношение подвергшихся гидролизу молекулам составляет 1/20000 Предположительно процесс идет по схеме:

$\begin{array}{c} Pb_{5}(H_{2}O)(OH)_{7}(NO_{3})_{3S}+OH^{-}\leftrightarrow \\ Pb_{5}(OH)_{8}(NO_{3})_{2S}+H_{2}O, \\ Pb_{5}(H_{2}O)(OH)_{7}(NO_{3})_{3S}\leftrightarrow Pb_{5}(OH)_{8}(NO_{3})_{2S}+H^{+}. \end{array}$

Рассчитанное стехиометрическое соотношение по данным ТГА: Pb:OH $^{\circ}$:H $_2$ O:NO $_3$ $^{\circ}$ =5:7,2:1,2:2,8 соответствует формуле Pb $_5$ (OH $^{\circ}$) $_{7,2}$ (H $_2$ O) $_{1,2}$ (NO $_3$) $_{2,8}$, что близко к прогнозируемому составу. Pb $_5$ (OH $^{\circ}$) $_7$ (H $_2$ O)(NO $_3$) $_3$. Осадок имеет белый цвет.

Заключение

Для синтеза целевых соединений необходимо учитывать возможность возникновения колебательного процесса в системе $Pb(II)-H_2O-OH^-$, который имеет место в случаях:

1. Наличия достаточно большой концентрации соли металла в растворе (>0.0001 моль/л) и соотношениях концентраций реагентов близких к 1:1.

- 2. Количество добавляемого при титровании NaOH не более $2 \cdot 10^{-5}$ моль и достаточный интервал между порциями титранта.
- 3. При смешении реагентов система будет находиться в неопределенном или невоспроизводимом состоянии и требуется достаточно большое время выдерживания раствора для достижения истинного равновесия.
 - 4. Наличие твердой фазы в системе.

Литература

- 1. Марков В.Ф., Маскаева Л.Н., Иванов П.Н. Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Екатеринбург: УрО РАН, 2006. 217 с.
- 2. Гатиятуллин И.Р., Юсупов Р.А., Бахтеев С.А. Оптимизация синтеза целевых соединений и тонких пленок сульфида кадмия в системе Cd(II)—H₂O—OH[−] тиомочевина // Вестник Казанского технологического университета. 2012. №15. С.53-56.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации по госконтракту 16.552.11.7060 по теме «Развитие центра коллективного пользования научным оборудованием для обеспечения комплексных исследований в области получения нанодиффузионных покрытий, модифицированных композиционных мембран и наноструктурированных композиционных материалов с улучшенными свойствами». Измерения проведены на оборудовании ЦКП КНИТУ в лаборатории спектральных методов анализа.

[©] **3.** Т. Динь – асп. каф. аналитической химии, сертификации и менеджмента качества КНИТУ, gnudktvn@gmail.com; С. А. Бахтеев – канд. хим. наук, асс. той же кафедры, said-bah@yandex.ru; Р. А. Юсупов – д-р хим. наук, проф. той же кафедры, yusupovraf@yandex.ru.