
Introduction Any measurement of physical system is made by means of some device
(in the more general case - the measuring environment). Thus there is an interaction
of the device to measured system therefore the system condition to some extent
changes depending on intensity of influence from the device. At measurements of
classical system quite pertinently to suppose, that the measurement doesn't change a
condition of measured system at all. If describe a condition of measured system and
measurement procedure make so in details that features of influence of measuring
system that a situation cardinally are shown changes. It appears that owing to the
quantum nature of physical systems during the measurement the conditions of
measured system are changing. These changes are so more than more information
received by measurement. It is necessary to pay for the information. So in the theory
of measurements the information increase corresponds to reduction of entropy [1]: ,
where pi aprioristic probabilities of various conditions of system, n – quantity of
conditions. Thus, increasing accuracy of measurement, we necessarily increase also
return influence of measuring procedure by a condition of measured system. John
Neumann for quantum system has proved a background and mathematically has
strictly formulated a postulate of a reduction. According to this postulate at
measurement of some observable size the system condition changes in such a manner
that in a new condition the measured observable has already another certain value,
and it has turned out as a result of measurement. Occurrence of this condition is called
as a condition reduction of a system. In the theory of measurements it is considered
two types of measuring systems: passive and active [2]. In the passive measuring
system there is a comparison of the defined size with the standard without any active
influence on the system which parameters define. The feature of active measuring
system is influence on characterized system, and the response of system to this
influence gives the information for calculation of demanded parameters. As the active
measuring system assumes a certain influence on characterized object in the course of
this influence the object can undergo changes. Therefore for reception of the most
exact value of the defined parameter in the theory of measurements perform the
operation of coordination between measuring system and the measured object,
consisting in reduction, and at the best data dissipation, influences of entrance
influence on measured object. At the measurements concerning difficult systems or
objects, the measured size often depends on set of various circumstances. Usually the
nature and quantitative characteristics of these dependences are unknown. The
circumstances influencing on result of measurement don't remain constants during
carrying out of measurement, there fore it’s impossible to correct this or that error of
measurement. It means that measurement isn't selective, and the result of
measurement comprises also other factors. In the greatest measure these principles
are important for sizes which assume measurements in which basis the difficult
physical and mathematical models demanding a certain sort of updating according to
conditions of measurements lie. In the mechanic of polymers such sizes are the



parameters characterizing relaxation properties of materials. These sizes and
dependences corresponding to them give the chance to judge structure of polymers,
to find temperatures of structural transitions and service conditions of corresponding
materials [3,4]. Theoretical part One of widely used methods in research elastic and
relaxation properties of polymers in the block at periodic sinusoidal loadings is the
method of Aleksandrova-Lazurkina [6]. Unlike resonant this method is applied for high
elasticity deformations of polymers in the field of the frequencies lying considerably
below own frequency of the sample – far from resonant area. In this case, the phase
relations, phase lag of deformation from stress-relaxation time is determined only by
or through the appropriate range of relaxation time and elastic material. In this
method phase parities don't depend on the form, the size and density of the sample
that allows to find relaxation time of a material from measurements . The method is
based idea of rubbery (high elasticity )deformation as a reflection of the deformation
of flexible macromolecules, and the appearance of the elastic forces of deformation
and shape recovery after unloading - the result of thermal motion of parts of
macromolecules. However, all the patterns that underlie the method, refer to the
equilibrium states of the body under load. The study of temporal patterns of rubbery
deformation in a regime of constant stress or strain, as well as in periodic loads
confirmed the significant role of the kinetics of rubbery deformation relaxation
phenomena in the behavior of polymeric materials under mechanical stress, and in the
process of vitrification of polymers [5,7]. Depending on the interim regime changes
impact the behavior of the material. At a constant temperature with increasing speed
or increasing the frequency of impacts observed so-called effect of "hardening" of the
material [8]. Total deformation of the polymer is composed of an elastic, rubbery (high
elastic) flow and deformation. When considering the polymer in the rubberlike (high
elasticity) state accepts that the macroscopic viscosity of the material is great and
flow absent. To obtain the dependence of rubbery component of the strain on the
applied stress using the simplest model for these conditions[9]. In this case, such a
model is a three-element model representing a model of Kelvin (parallel connected
spring and damper), connected in series with a spring. The equation describing the
relationship between stress and strain of this model is as follows: , (1) where σ -stress
acting on the system being studied; ε-deformation occurring in the system under the
applied stress, Е0- the module of elasticity; Е1- high elasticity module; η – micro
viscosity. Then the deformation of the polymer is made up of elastic strain ε0 = σ/Е0
and high elasticity ε1 parts. Rewriting equation (1) relative rates of change of strain
and isolating highly elastic component of deformation, we can received : (2) If the
stress varies with time harmonically with frequencyω: σ=σ0cosωt, (3) full deformation
is described by the equation: , (4) where the parameter τ = η / Е1 is called as
relaxation time. In some works [10,11] this parameter is named delay time, and
relaxation time is named the parameter, which proportional to it: (5) The first
exponential member of the equation (4) contains constant C, witch depending on



initial conditions, and defines an unsteady part of deformation fading in due course.
Therefore, if from the beginning of carrying out of measurement has passed enough
time t>> τ (the transients which have arisen at the moment of a start of motion, have
already faded and takes place the established conditions) it is possible to neglect this
member and consider only that part of expression (4), which is concluded in braces.
This part describes the stationary oscillations, which are studied on experience. They
consist of oscillations in a phase with the pressure, described by expression in
parentheses and consisting of elastic and high elastic components, and the
oscillations, which are lagging behind pressure on a phase on π/2. As these two
harmonious oscillations are directed along one axis (a vector of their speeds are
collinear) the amplitude of deformation is expressed by the equation: (6) Using
condition Е0>> Е1: as the high elasticity module for polymeric materials on some
orders less than the module of elasticity, it is possible to receive dependence of
deformation on pressure and frequency of loading (ω): (7) The received expression can
be transformed as (8) Parameter ε0/σ0 is dynamic compliance (I) and equal to the
inverse dynamic module. The compliance makes sense strain in a single strain. Using
complex representation of harmoniously changing deformation: ε (t) = ε0еiωt, strain
rate will have an expression dε (t) / dt = ω ε0ei (ωt + π / 2). Substituting this
expression in the differential equation (1) and reducing on ε0еiωt, we received: , (9)
where E * is a complex dynamic modulus, which can be represented as: (10) The first
term is a real, and the second - the imaginary part of the complex dynamic modulus (E
*= E `+ iE ``), which is proportional to E and depends on the frequency . E `` (ω)
determines the losses at harmonic deformation and is the module of losses. Similarly
complex dynamic module E * (i ω) can be represented by a complex dynamic
compliance I * as the sum of the imaginary and real I `` I `parts. Considering that I * (i
ω) E * (i ω) = 1, we can provide the relevant expressions in the form: I * (iω) = I `(ω) +
i I `` (ω), where (10), (11) where I0=1/E0, and I1=1/E1. Absolute measured
deformation looks like: From condition I1>> I0 (as Е0>> Е1): (12) The phase angle δ
between the I and I ``, i.e between strain and stress is defined as: (13) In essence the
angle δ describes the mechanical loss, i. e share of mechanical energy, which came
into heat, or the proportion of dissipated energy per cycle of deformation per unit
volume. A measure of this transformation may be an area corresponding to the
hysteresis loop formed by the dependence of deformation on the voltage in the cycle
of periodic actions (between the curve of loading and unloading). At low frequencies,
when you can measure the hysteresis loop and hysteresis loss coefficient is used
mechanical loss [3]: χ = ΔW/W, where W-total work force for a series of mechanical
deformation, and ΔW - dissipated energy per cycle of deformation, which is
proportional to the square hysteresis loop. Between χ and tgδ there is a dependence
at all frequencies in terms of linear viscoelasticity Thus, for asymmetric vibrations from
0 to 2ε0 according to work [12] such dependence is found: . (14) The decision of this
equation concerning parameter tg δ gives dependence: . (15) This expression can be



represented as: tgδ = ψ. In expression (13) from condition Е0>> Е and I1>> I0 at low
frequencies in a first approximation, we obtain: tgδ=ωτ (16) Equating last two
expressions, we receive: ψ = ωτ, whence τ = ψ / ω. According to the second postulate
of the Boltzmann adopted in his theory of the elastic aftereffect, and the underlying
Boltzmann-Volterra model that describes the relaxation phenomena, using a function
of heredity [13]: action occurred in the past few strains on the stresses caused by
deformation of the body at any given time, do not depend on each other and therefore
algebraically added. This position has received also the name of a principle of the
Boltzmann`s superposition . It should be noted that the polymer body superposition
principle holds in the upper-bounded the range of deformation, stress and rate of
change. Given this principle, considering the dissipative processes occurring during
application of periodic voltage to the material in the rubberlike state for a long time,
we can conclude that there is an accumulation of mechanical energy dissipation in
each cycle. Then, if the energy is transformed into heat during one cycle is determined
by parameter χ1, then in a low heat with the environment during N cycles of the
energy dissipated during the time t will be: χcom = χ1t ν, where t ν = N. Stored energy
in the sample is converted into heat, which should lead to an increase in temperature.
The principle of temperature-time superposition [14], which establishes the
equivalence of the effect of temperature and duration of exposure on the relaxation
properties of polymers, we can assume that the increase in the impact load on the
material is proportional to the action of temperature. Empirical dependence of the
temperature ΔТ of the exposure time t and the intensity (frequency) exposure to ν in
the first approximation be written as: ΔT = bt ν, where the b-parameter, taking into
account the characteristics of energy conversion, depending on the structure of the
material. Relaxation time of the supplied periodic voltage decreases with increasing
temperature and obeys the Arrhenius equation τ=τ0еU/RT (17) For elastic-plastic
bodies similar dependence follows from Aleksandrova-Gurevich's equation [15] and
has the form τ=τ0еxp[(U0-aσ)/RT], (18) where U0 - activation energy of relaxation
process, the constant of the material. This equation takes into account the
dependence of the relaxation of the load. If we assume that U0-aσ ≈ U and to
determine the relative relaxation time as τt/τ1 (the ratio of the current value of the
relaxation time of the initial value of you during the load application), then, on the
basis of equation (18), we can represent this value as an expression: (19) where the
temperature T1 corresponds to the beginning of load application in the relaxation time
τ1, and the increment of the ΔT is the temperature change in the impact load. After
application of rather simple algebraic transformations the formula (19) will become: .
(20) If instead the increment of temperature ΔT would use the proposed higher
proportion of the value of the exposure time t and frequency of the applied load ν,
then the expression (20) becomes: (21) Using this expression and taking into account
the approach adopted, it is possible to experimental data on changes in the
mechanical loss factor (tangent of mechanical losses) over time, the impact loads to



find the estimates of the activation energy of relaxation process, determine the extent
to which the process is stationary (steady), the degree of linearity of the relaxation
processes and the range of conditions and the regime correct determination of
relaxation parameters for a periodic load. Experimental part In the present work as
object of research polyethylene of low density (LDPE)). Samples in the form of the
cylinder: diameter (d) from 8 mm at a parity h/d = 1,5 made pressing at temperature
180оС, pressure of 150 kgs/sm2. To obtain a homogeneous sample produced an
extract of the pressure and temperature 180oC at least 10 minutes with pre-pressing
for the release of air located between the grains of the original polymer. Samples
subjected to periodic monoaxial deformation of compression on the installation
described in [16] at room temperature (293 K). As a result of the periodic action of the
voltage on the sample received the stress-strain during loading and unloading of the
form a hysteresis loop. The study used three discrete frequencies of loading: 0.017,
0.17 and 1.7 Hz. Under each of these frequencies is tested at least three samples for
30 min., Taking readings every 5 min. Results cheated, define the parameters of the
mechanical losses as the ratio of the hysteresis loop to the area between the curve of
loading and the axis of strain (χ = ΔW/W=Sloop/Shole.). The results of measurements
of at least three samples were averaged and subjected to further processing in
accordance with those presented in the theoretical part of the calculations. Figure 1
shows kinetic curves of variation of the mechanical loss by prolonged exposure of
three frequencies: 0.017, 0.17 and 1.7 Hz. Coefficient of mechanical losses Fig. 1 -
Change of the mechanical losses coefficient eventually at influence of periodic
loadings with frequency: 1- 0.017 Hz, 2 – 0.17 Hz, 3 – 1.7Hz It is seen that with
increasing time of deformation coefficient of mechanical losses vary, but relationships
have different characteristics So for low frequencies 0,017Гц ( curve 1) and 0,17 Hz (
curve 2)the initial value of this parameter is higher than the next. In all probability this
is due to the fact that during the reduction of χ is the system output at steady state, ie
where the constant C in equation (4) becomes equal to 0. For higher frequency - 1.7 Hz
(curve 3) the establishment of this regime is much faster. For higher frequency - 1.7 Hz
(curve 3) the establishment of this regime is much faster. 1/t,1/s Fig. 2 - Dependence
of relative time of a relaxation (τ t/τ0) on duration of influence with frequency of 0,017
Hz Figure 2 shows the inverse of the logarithm of the relative relaxation time in degree
-1 (which corresponds to the left side of the equation (21)) the reciprocal of the time of
impact load on the sample with a frequency of 0.017 Hz. Dependence is well
approximated by a straight line, i.e. the found coordinates dependence of relative time
of a relaxation and time of influence of loading is directly proportional. Meaningfully
the value found at the intersection of this dependence with the vertical axis and
bearing T1 equal to ambient temperature (293 K) can determine the activation energy.
In these conditions (Fig. 2) it is equal to 4.9 kJ / mol. Time of loading, min 1/t,1/s Fig. 3
- Dependence of relative time of a relaxation (τ t/τ0) on duration of influence with
frequency of 0,17Hz The slope in Figure 2 provides an estimate of the value of the



parameter "b" in formula (21) . The calculation shows that the frequency of 0.017 Hz, b
= 11,88. Since the dependence is linear in a rather wide time interval, this gives
reason to conclude that the activation energy of relaxation process with periodic
loading of the solid LDPE under these conditions virtually unchanged. Using the
representation of the relative relaxation time of the duration of the periodic effects in
the corresponding coordinates for the frequency of 0.17 Hz (Fig. 3) makes it possible
to calculate the activation energy and the parameter b for the relaxation process of
solid LDPE under these conditions. With accuracy to the experimental errors (for a test
frequency of 0.17 Hz), the activation energy is 4.9 kJ / mol and b = 0,414. In Fig.4 a
similar dependence is shown for the frequency of 1.7 Hz. The calculated value of
activation energy is the 2,4 kJ/mol. The value b =0,04. Fig. 4 - Dependence of relative
time of a relaxation (τ t/τ0) on duration of influence with frequency of 1,7Hz Analyzing
the obtained values, we should note a decrease of b with increasing frequency (Fig. 5),
indicating that the difference in the relaxation processes occurring at different
frequencies. Another interesting fact is that for frequencies 1.7 and 0.17 Hz sampling
rate on the parameter b is the same and equal to 0.07, while the frequency of 0.017
Hz (three orders of magnitude smaller than the largest) is the product of three times
and equals 0,202. It should be noted the difference in the nature of the drawings:
Figure 2 - to ν = 0,017 Hz and Figures 3 and 4 - respectively for 0.17 and 1.7 Hz. n ν,
Hz Fig. 5 - Dependence of parameter "b" from frequency of loading In the Figure 2 no
jumps in the dependence, in FigIf on fig 3 and 4, the values for the initial periods of
exposure time is several times higher than those in the subsequent course of
dependencies. Perhaps this difference is caused by various structural transformations
under mechanical loading with different frequencies. With regard to the activation
energy, it is the smallest (2.4 kJ / mol) for the frequency of 1.7 Hz and for frequencies
of 0.17 and 0.017 Hz, the activation energy, calculated according to the results of
these experiments, it turns out the same and equal to 4.9 kJ. To paraphrase the
equation of the Aleksandrov-Gurevich (18), where instead of the stress (σ) using the
frequency ν, instead of the coefficient "a" use the "" b, then we can define a certain
characteristic value, similar to U0, the initial activation energy of relaxation process, a
constant: U0=U+bν Analysis of the dependence of the initial activation energy U0 of
the frequency (Fig. 6) shows that with increasing frequency ν decreases linearly
energy U 0 frequency of loading, Hz Fig. 6 - Dependence of initial energy of activation
relaxation process from frequency of loading Thus, using the principle of temperature-
time superposition and kinetic coefficient of mechanical losses can be at different
intensities of loads to determine the time interval in which the measurement of
relaxation parameters will be most correct. Besides using the above approximation, we
can give a preliminary assessment of the relaxation parameters and analyze the
nature of relaxation processes taking measurements without changing the initial
temperature.


