Introduction In Gaussian random walks statistics, the mean—square end—to—end
distance R for a polymer chain, as well as mean—square distance between two not
very closely located internal links obey general dependence[l]: n >> 1 (1) where a is
the mean length of the chain link according to Kuhn[2]; n is the chain length or the
length of a given chain section, expressed by the number of links in it. Self—avoiding
random walks statistics (SARWS) determines the conformational radius RN,f of the
undeformed Flory coil as the most probable end—to—end distance of the polymer
chain[3,4]: (2) Here N is the total chain length, d is the Euclidian space dimension.
According to (2), Flory coil is a fractal, i. e. an object, possessing the property of the
scale invariance in dimensionality space . At derivation[3] of (2), however, the
distribution of the internal polymer chain links in its conformational space remains
unknown, therefore, it can not be indicated in advance that the distances between the
terminal and internal chain links or between the internal ones obey the same
dependence (2) at the value of N as the length of the selected section of a polymer
chain. Study of the problem of internal polymer chain links' distribution is based mainly
on the analysis [5,6] of the scale distribution function Pij(r) of distance r between two
links with ordinal numbers i and j: (3) Function is usually written in the form of power
or exponential dependence on the only variable x: f(x) ~ x0 at x 1, f(x) ~ exp{-x6} at
x >> 1. (4) Studying the correlations between two arbitrary points i and j of a polymer
chain, Des Cloizeaux[7] suggested dividing the scale function Pij(r) into three classes,
that describe the distribution of distances between two terminal points of a polymer
chain (P(0)ij(r) with exponents 8o and 6o ati = 1, j = N), between the initial and
internal points (P(1)ij(r) with exponents 81 and 61 ati =1, 1 j N) and between two
internal points (P(2)ij(r) with exponents 82 and 62 at 1 i j N), respectively. Using the
method of the second order e—expansion within the range x 1 for the space d = 3, Des
Cloizeaux[7] has obtained in particular: 6o = 0,273, 61 = 0,459, 62 = 0,71. To
evaluate the exponents 6i and 6i some other methods were used as well. Let us
present some of the obtained results: [8]60 = 0,27; [8,9,10]61 = 0,55, 0,61, 0,70;
[8,9]62 = 0,9, 0,67; [8,11]60 = 2,44, 2,5, [8]61 = 2,6; [8]62 = 2,48. In spite of the
spread in exponent values, they unambiguously indicate (especially when comparing
the values of 80, 61 and 62), that distribution function Pij(r), retaining their scale
universality, quantitatively significantly depends on whether we consider the distance
between terminal points, a terminal and internal one or between two internal points of
a polymer chain. Whereas the proposed methods of analysis establish this fact, they
however do not reveal the reason of the above—mentioned difference. Reference to
strengthening the effects of the volume interaction between the internal links of a
polymer chain can not be absolutized, since these effects can not be taken into
account at computer simulation of self—avoiding random walks, but the results of the
calculations according to them give the same estimations of exponents 6i and &i as the
analytic methods that take into account the volume interaction. The shortcoming of
the proposed approaches is also the fact that the scale distribution function Pij(r) is



approximate and does not enclose the most significant region of parameter x changing
between x 1 and x >> 1, where Pij(r) takes on maximal values. Finally, it should be
noted that the role of the length of the second section of a polymer chain (at
evaluating 81 and 61 the length of the second section is extrapolated to «) or the
lengths of its two sections (at evaluating 62 and 62) is outside of the analysis. Hence,
the suggested approaches do not allow to solve the problem of the internal links
distribution for a polymer chain completely. In the present work we propose its analytic
solution in terms of SARW strict statistics, i. e. without taking into account of the
so—called volume interaction. Initial statements Preliminary let us briefly introduce the
main statements of SARW statistics, that are necessary for the subsequent
analysis[3,4]. The Gaussian random walks in N steps are described by the density of
the Bernoulli distribution: , (5) where n is a number of the random walk steps in
i—direction of d—dimensional lattice space with the step length a, which is equal to the
statistical length of Kuhn link; is the number of effective steps in i—direction: s =
s+—s—, where s+, s— are numbers of positive and negative steps in i—direction.
Numbers of n steps are limited by the following correlation: . (6) The condition of self-
avoidance of a random walk trajectory on d—dimensional lattice demands the step not
to fall twice into the same cell. From the point of view of chain link distribution over
cells it means that every cell can not contain more than one chain link. Chain links are
inseparable. They can not be torn off one from another and placed to cells in random
order. Consequently, the numbering of chain links corresponding to wandering steps is
their significant distinction. That is why the quantity of different variants of N
distinctive chain links placement in Z identical cells under the condition that one cell
can not contain more than one chain link is equal to Z!/(Z—N)! Considering the identity
of cells, a priori probability that the given cell will be filled is equal to 1/Z, and that it
will not be filled is (1—1/Z). Respectively, the probability w(z) that N given cells will be
filled and Z - N cells will be empty, considering both the above mentioned condition of
placement of N distinctive links in Z identical cells and the quantity of its realization
variants will be determined by the following expression . (7) Probability density of the
fact that random walk trajectory is at the same time SARW statistics trajectory and at
given Z, N, ni will get the last step in one of the two equiprobable cells, which
coordinates are set by vectors s = (s), differentiated only by the signs of their
components si, is equal to . (8) Let us find the asymptotic limit (8) assuming Z >> 1, N
>> 1, ni >> 1 under the condition si ni, N Z. Using the approximated Stirling formula
In x!» xInx-x+In(2p)1/2 for all x >> 1 and expansion In(1-1/Z) » —1/Z, In(1-N/Z) »
-N/Z, In(1xsi/ni) » xsi/ni - (si/ni)2/2, and assuming also N(N - 1) we will obtain[3,4]: .
(9) Transition to the metric space can be realized by introduction of the displacement
variable . (10) and also the parameter — the standard deviation of Gaussian part of
distribution (9): . (11) Then, (12) (13) and for the metric space expression (9)
becomes: . (14) Here is the volume of conformational ellipsoid with the semiaxes of xi,
to the surface of which the states of the chain end belong. A maximum of at the set



values of and N corresponds to the most probable, i. e. equilibrium state of the
polymer chain. From the condition of /x= 0 at x= x we find semiaxes x of the
equilibrium conformational ellipsoid [3]: . (15) In the absence of external forces, all
directions of random walks of the chain end are equiprobable, that allows to write: ,
(16) . (17) The substitution of (17) into (15) makes the semiaxes of the equilibrium
conformational ellipsoid identical and equal to the undeformed Flory coil radius: . Let
us underline two important circumstances. First, SARW statistics leads to the same
result, i. e. to formula (2), that Flory method, which takes into account the effect
(repulsion) of the volume interaction between monomer links in the self—consistent
field theory. However, as it was explained by De Gennes[6], accuracy of formula (2) in
Flory method is provided by excellent cancellation of two mistakes: top—heavy value
of repulsion energy as a result of neglecting of correlations and also top—heavy value
of elastic energy, written for ideal polymer chain, that is in Gaussian statistics.
Additionally, one must note, that formula (2) is only a special case of formula (15),
which represents conformation of polymer chain in the form of ellipsoid with semiaxes
xio # Rf, allowing to consider this conformation as deformed state of Flory coil.
Second, obtained expression (14) for density of distribution of the end links of polymer
chain is not only more detailed but also more general than scale dependencies (4) at
0o and 60, which are approximately correct only at the limits xi / Ri 1 and xi / Rf >> 1.
Free energy FN of the equilibrium conformation is determined by the expression at
(18) From here for undeformed Flory coil we have: . (19) For the deformed one -, (20)
where is the repetition factor of Flory coil's volume deformation: , (21) where Ai is a
repetition factor of linear deformation, . (22) At any deformations the conformational
volume diminishes, therefore in general case [3]. Sarw statistics for the internal links
of a chain The internal n—link (1 Z needs to be introduced. Then the probability density
of the random walk trajectory's self—avoiding for the polymer chain with fixed position
of the internal link can be described by the Bernoulli distribution in the same form (7),
but with a new value of cells number: . (23) The Gaussian random walks in n and N—n
steps of the first and second chain sections can be described thereby by the Bernoulli
distribution (5), but here in expressions for the distribution density (n, s) for the first
chain section and (N—n, s) for the second one, respectively, the following conditions of
normalization must be implemented: , (24) (25) and in place of the factor (1/2)N
factors (1/2)n and (1/2)N—n respectively should be used. As applies to the whole
polymer chain, the distribution densities w(n) and w(N—n) of the SARW statistics
trajectories for the first and second chain sections can be determined by the following
expressions: , (26) . (27) In an asymptotic limit the expressions (26) and (27) can be
written: , (28) . (29) The lengths of every section fractions of the total chain length are
introduced here as: , . (30) Defining the variables of the metric displacement of and in
the form (10) and standard deviations and of the Gaussian part of distribution (28) and
(29) in the form (11), instead of (28) and (29) we obtain:, (31) . (32) Owing to the
normalization (24) and (25) we have: , . (33) The values and are the volumes of the



conformational ellipsoids with the semiaxes x and y of the first and second sections of
the polymer chain, respectively. Hence, as laid down earlier (13), it is possible to write:
. (34) Entering the volume fractions of the proper conformational ellipsoids , (35) we
obtain: , (36) (37) These expressions are sought densities of distribution of internal
links of the chain from its ends. Parameter B will be determined later. The most
probable states of the polymer chain sections meet the conditions =0 at x, /=0 at y=y.
Using them and assuming that values and 1— do not depend on specific realizations of
x andy, i. e. these are functions of n and N—n only, we find , (38) (39) In the absence
of external forces, all directions of random walks are equiprobable, therefore according
to (31) it is possible to write: , (40) . (41) Using (40) and (41) in (38) and (39), we will
obtain expressions for the equilibrium conformational radii of both polymer chain
sections: , (42) . (43) The conformational volumes here are equal to , therefore
expression (35) may be rewritten in the form (44) From (42) — (44) it follows: ,. (45)
Excepting from (42) and (43), we get finally , (46) . (47) Eqns. (46) and (47) together
determine the most probable, that is the equilibrium distances of the internal link from
the polymer chain ends. As one can see, although between R and R a simple
correlation is observed, each of these values depends by complicated way not only on
its own section length but also on the length of another one. Formulas (46) and (47)
are correct at [2], including at d = 1. For one—dimensional space from (46) and (47)
follows physically expected result , . Structure of the polymer chain conformational
space From eqgns. (46) and (47) follows that and , and signs of equality are achieved
only on the chain ends, i. e. at and , respectively. This gives evidence to heterogeneity
of the polymer chain conformational volume. In addition, because of interconnection
between and , both chain sections are not fractals. Let us comment both
circumstances, confronting the values and from (46) and (47) with those values of and
, which these chain sections would have, if they were free and submitted to fractal
correlation of the type (2):, (48) . (49) From comparison of (46) — (49) it follows: , (50)
(51) Dependencies (50), (51) are illustrated on Figure 2 for the option of d = 3. Fig. 2 -
Ratios and calculated on the egns. (50) and (51) depending on a and 1—a As one can
see, only in the area >0.5 and correspondingly 1->0,5, ratios and , though are more
than 1, but insignificantly. It allows to consider of these chain sections as the fractals
objects with a small error and to describe them by fractal dependences (48) and (49).
However, for short chain sections, i. e. at 0,5 or 1-0,5 ratios and become less than 1
and sharply diminish towards the chain ends, which indicates the compression of the
conformational volume space nearby the ends of a chain. Yet even more evidently
heterogeneity of the structure of polymer chain's conformational volume becomes
apparent at the analysis of volume density , i. e. the numbers of links in the unit of
conformational volume for given chain section. Let us be limited to considering only
the first chain section n in length, for which . (52) Using (46), we get, (53) where is an
average links' density in conformational volume of the whole polymer chain. The
correlation between local and average density of the chain links is illustrated on Figure



3 at d = 3. Evidently, ratio in the range of 0.2 at sharply increases, and for example at
=0.01 achieves the value of 10order. As the dependence of the ratio is similar, but
asymmetric, it can be concluded that the conformational volumes near the chain ends
are strongly compressed, so that the density of links in them considerably exceeds the
average one over the conformational volume of the whole chain. With some caution
one can suppose that the conformational volumes near the chain ends have a globular
structure. Fig. 3 - Ratio between local density of polymer chain link pn and average
one pN depending on a calculated on (53) To support this point, we propose also
considerations based on experimental research of dymethacrylates postpolymerization
kinetics, i. e. dark, after turning off UV irradiation, process of polymerization[4]. It was
found, that the chain termination is linear, and its kinetics submits to the law of
stretched Kohlrausch exponent: . (54) Here g and 0 1 are constants; t is characteristic
time of linear chain termination. A theoretical derivation[12] was based on the idea,
that linear chain termination is the act of «self—burial» of macroradical's active center
and manifests itself as the act of chain propagation, leading into a trap. Taking into
account the fractal properties of polymer chain and assuming that a set of traps in its
conformational volume is a fractal as well, we obtain the expression similar to (54):,
(55) where is characteristic time of chain propagation act, and are monomer and traps
concentrations in the macroradical's conformational volume, respectively. According to
the derivation of expression (55) , (56) where and are fractal dimensions of the
conformational volume of macroradical and a set of traps in it. From experimental data
the value of , so we can accept . Then for the dimension of the traps set fractal the
expression (57) follows from (56): , (57) which not only satisfactorily coincides with
experimental value of at d = 3, but also presents physically justified value of at .
Correlation (57) shows that . Therefore, in the reaction zone of growing macroradical,
there are both «strange» traps formed by polymer chains, external for given
macroradical, with fractal dimension close to d and «own» ones with fractal dimension
of polymer chain . This derivation in[12] is based only on kinetic researches of
dymethacrylates postpolyme-rization, but, apparently, it coordinates well with the
results of present work, according to which «own» traps for a growing macroradical are
caused by high density of links in the conformational volumes near the polymer chain
ends, that can screen or even block up macroradical active center. Free energy of
conformation of polymer chain sections Let us determine free energies Fn and FN—n of
the conformation of polymer chain sections, separated by fixing of internal n—link, on
type (18) by expressions: at xi = xio, (58) at yj = yjo. (59) For the equilibrium state in
the absence of external forces, i. e. at all and , using (36), (37), (45)—(47) in (58) and
(59), we get, (60) . (61) From here it follows: . (62) Hence, . It is related to the fact
that two chain sections are thermodynamic subsystems, which interact with each
other. Thus, fixing the position of a polymer chain internal link increases its negative
entropy and positive free energy of conformation due to diminishment of the polymer
chain conformational volume. Therefore the sum of free energies of the chain sections



conformation must be compared not to , representing free energy of undeformed Flory
coil conformation with the volume of , whereas for free energy of conformation of the
Flory coil deformed to the volume, determined by the expression (20). As the multiple
(repetition factor) of the volume deformation here is equal to (63) we have identically .
(64) It is now possible to accomplish the reverse transition and write the expression ,
(65) which was not obvious in the beginning. The most probable distance between two
internal links of a polymer chain If two internal links of a chain are selected according
to the condition 1 k n N, the polymer chain is divided into three sections with the
lengths of k, n—k and N—n, to which the fractions of the total chain length , and
correspond. Let us suggest that are numbers of sections with quantities of links k, n - k
and N - n, to which fractions al =k /N, a2 = (n—k) /N and a3 = (n—k) / N from
general number N of links in a chain are corresponded. Extending the
above—mentioned procedure of analysis of two chain sections to three sections, we
get the general expression for the distribution density of the end of the given section
regarding to its beginning: , , . (66) Here Bj is a fraction of conformational volume of
the given section in the sum of conformational volumes of all sections; xji , are
semiaxes of conformational ellipsoid j with center in the beginning of the given
section. The surfaces of this section involve the states of its end. The square
deviations aji of Gaussian part of distribution (66) obey the normalization conditions of
the form: . (67) At equiprobability of walks in all directions of d-dimensional space we
have: . (68) In this case the most probable distance between the beginning and the
end of the chain in the given section will be equal to:, (69) and for Bj the following
expression will be correct: . (70) According to (69) the value of Rj depends not only on
the length of the given chain section but also on where this section has been chosen.
Thus, we can note again that selected three sections of polymer chain are not
independent, but are interactive subsystems. Therefore, total free energy of
conformation of the chain three sections exceeds free energy of conformation of
undeformed Flory coil. But the following equality holds identically: , (71) where the
multiplicity of Flory coil's volume deformation at the division of the chain into three
sections is determined by the expression: . (72) Conclusions Fixation of the position of
polymer chain internal links separates its conformational volume into interacting
subsystems. Their total conformational volume is smaller, and free energy is larger
than the conformational volume and free energy of Flory coil, respectively. From
expressions, which determine the probable distance between the polymer chain's
internal link and its ends, as well as between any internal links, it follows that the
structure of the polymer chain conformational volume is heterogeneous: the largest
density of the number of links is observed near the chain ends. This can result in
blockage of the macroradical's active centre and appear as a linear chain termination.



