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Были изучены физико-химические свойства термодинамически метастабильных систем – водных дисперсий 

гидрофобного эпоксиолигомера на основе бисфенола А и эпихлоргидрина. В качестве эмульгаторов и стабили-

заторов использовали анионные поверхностно-активные вещества, такие как олеиновая кислота и олеат 

триэтаноламина в щелочной среде при рН=11.5; для них построены изотермы поверхностного натяжения и 

определены коллоидно-химические характеристики на межфазной границе раздела жидкость / газ. Процесс 

получения концентрированных дисперсий (содержание дисперсной фазы – 60 %) совмещал разные типы воз-

действия на двухфазные смеси дисперсной фазы и дисперсионной среды: 1) адсорбционное самопроизвольное 

эмульгирование при 65-75 0С водного раствора поверхностно-активного вещества и смеси олигомера, пла-

стифицированного эпоксидированным рапсовым маслом; 2) диспергирование с использованием роторно-

статорного устройства до получения жидкой однородной системы молочно-белого цвета. Проведено иссле-

дование их структурно-реологических, дисперсионных и электрокинетических свойств, а также визуально 

оценена микроструктура и устойчивость при хранении. Установлено, что для получения защитных покрытий 

на основании стабильных пленкообразующих дисперсий эффективнее всего применять более однородную и 

мелкодисперсную коллоидную систему, в составе которой в качестве эмульгатора использована олеиновая 

кислота с концентрацией в растворе 1.2 мас.%, характеризующуюся самым малым медианным диаметром 

частиц и максимальной удельной поверхностью, более прочными структурными связями, что способствует 

более длительному сохранению агрегативной устойчивости дисперсии. Полученные результаты могут пред-

ставлять интерес для специалистов, разрабатывающих новые воднодисперсные материалы и покрытия на их 

основе для лакокрасочной, строительной, текстильной и нефтехимической отрасли. 
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The physicochemical properties of thermodynamically metastable systems, aqueous dispersions of hydrophobic epoxy 

oligomer based on bisphenol A and epichlorohydrin, have been studied. Anionic surfactants such as oleic acid and tri-

ethanolamine oleate were used as emulsifiers and stabilizers in an alkaline medium at pH = 11.5; surface tension iso-

therms for them were constructed and the colloidal-chemical characteristics at the liquid / gas interphase boundary 

were determined. The process of obtaining concentrated dispersions (dispersed phase content – 60 %) combined differ-

ent types of action on two-phase mixtures of the dispersed phase and dispersion medium: 1) adsorption spontaneous 

emulsification at 65-75 0C of an aqueous solution of a surfactant and a mixture of an oligomer plasticized with epox-

idized rapeseed oil; 2) dispersion using a rotor-stator device until a liquid homogeneous system of a milky white color 

was obtained. A study of their structural-rheological, dispersion and electrokinetic properties was conducted, and the 

microstructure and storage stability were visually assessed. It has been established that in order to obtain protective 

coatings based on stable film-forming dispersions it is most effective to use a more homogeneous and finely dispersed 

colloidal system, which contains oleic acid as an emulsifier with a concentration in the solution of 1.2 wt.%, character-

ized by the smallest median particle diameter and maximum specific surface area, stronger structural bonds, which 

contributes to a longer preservation of the aggregate stability of the dispersion. The results obtained may be of interest 

to specialists developing new water-dispersible materials and coatings based on them for the paint and varnish, con-

struction, textile and petrochemical industries. 

 

Введение 
 

Одним из наиболее важных и интересных объек-

тов коллоидной химии и физики поверхностных 

явлений являются водные дисперсии олигомеров, 

которые являются термодинамически метастабиль-

ными системами [1, 2], представляют собой прямые 

эмульсии, поскольку дисперсная фаза является 

неводной неполярной жидкостью, называемой неза-

висимо от природы маслом, а дисперсионная среда – 

водой.  

В настоящее время их используют в качестве 

связующих в различных технологических процес-

сах [3-7], при создании новых пленкообразующих 

материалов для лакокрасочной промышленности 

(лаков и грунтовок с противокоррозионными свой-

ствами [8, 9]) и при получении строительных ас-

фальтобетонных [10-12] и судостроительных покры-

тий и ламинатов электротехнического назначения 

[2]. Также можно отметить их перспективное при-

менение для текстильного производства [13], где 

пигментные красители в пленке связующего вслед-
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ствие адгезии прикрепляются к поверхности воло-

кон материала, что позволяет ткани в процессе кра-

шения стать несминаемой, повысить стойкость кра-

сителей к трению, улучшить гигиенические и физи-

ко-механические свойства текстиля; для производ-

ства высокопрочных композиционных материалов 

при обработке стеклянных и углеродных волокон и 

в составе замасливателей [14-16], для повышения 

качества цементирования и долговечности при экс-

плуатации нефтяных скважин за счет использования 

нового типа цементного раствора, модифицирован-

ного эмульсией на основе эпоксидной смолы (кон-

центрацией до 20 %), что позволяет улучшить его 

механические и эксплуатационные свойства [17].  

Воднодисперсные материалы обладают рядом 

ценных плюсов перед традиционными органораз-

бавляемыми эпоксидными материалами, главным из 

которых является отсутствие летучих органических 

соединений и растворителей, что способствует по-

вышению экологической безопасности. Вследствие 

пониженной токсичности и пожарной опасности они 

обеспечивают лучшую промышленную санитарию, 

снижая требования к пожаро- и взрывоопасности 

помещений [2, 18], легко отверждаются при темпе-

ратурах 5-150 0С, имеют относительно невысокую 

стоимость, высокую адгезионную способность, поз-

воляют улучшить качество покрытий и увеличить 

срок их службы вследствие высокой атмосферо- и 

коррозионной стойкости [14, 19].  

Несмотря на то, что воднодисперсные пленкооб-

разующие материалы могут быть перспективными 

аналогами синтетических и натуральных латексов и 

внедряются в промышленность во все больших 

масштабах, они пока не нашли достаточно широко-

го применения из-за недостатка отечественных про-

изводств качественных компонентов для этих ком-

позиций и высокой стоимости импортных эмульга-

торов и стабилизаторов.  

В качестве основного метода получения водных 

дисперсий олигомеров описывают эмульгирование с 

обращением фаз [6, 7, 20]. 

Дисперсии пленкообразующих веществ в воде 

синтезируются из олигомеров, содержащих функци-

ональные группы, которые переводятся в водорас-

творимое солеобразное состояние под действием 

соответствующих нейтрализующих агентов. Чаще 

всего используют диановые эпоксидные олигомеры 

и их соконденсаты с другими соединениями, такими 

как полиуретаны, полиакрилаты и другие, также 

применяют совмещенные реагенты [21, 22]. Кроме 

того, проводится модифицирование эпоксидной 

смолы методом самоэмульгирования путем введе-

ния в ее основную цепь карбоксильных и гидрок-

сильных групп [23]. 

В связи с тем, что эпоксидно-диановые олигоме-

ры являются гидрофобными по своей природе, то 

для создания устойчивых дисперсий они нуждаются 

в присутствии эмульгаторов и стабилизаторов [2, 

24-26], в качестве которых выступают поверхност-

но-активные вещества (ПАВ).  

Организованные растворы ПАВ являются наибо-

лее распространенными наноструктурированными 

жидкими системами, которые обладают способно-

стью радикально изменять свойства при адсорбции 

на поверхности раздела фаз. Действие эмульгатора – 

снижение поверхностного натяжения и повышение 

дисперсности – ведет к увеличению как агрегатив-

ной, так и седиментационной устойчивости. Кроме 

того, модифицирование поверхности частиц различ-

ными ПАВ и их смесями является общепринятым 

методом регулирования процессов структурообра-

зования между частицами дисперсных фаз, позво-

ляющим изменять в желаемом направлении струк-

турно-механические свойства дисперсных систем и 

материалов, поэтому актуальными являются иссле-

дования по расширению ассортимента эффективных 

эмульгаторов для получения устойчивых дисперсий 

эпоксиолигомеров.  

Согласно литературной информации в качестве 

эмульгаторов используют ПАВ различной химиче-

ской природы, в том числе и высокомолекулярные, 

такие как полимеры окиси этилена и окиси пропи-

лена, оксиэтилированные алкилфенолы, аминосо-

держащие соединения, амиды и имидазолины, поли-

алкиленгликоли и др., однако преобладают ПАВ 

неоиногенного типа [11, 13, 14, 27, 28]. В то же вре-

мя анионные ПАВ с гидрофильно-липофильным 

балансом (ГЛБ) =20-40 также могут быть перспек-

тивными эмульгаторами для вышеуказанных систем 

[14]. 

Цель данной работы – получить эффективные 

составы водных дисперсий эпоксидно-дианового 

олигомера, стабилизированные анионными ПАВ и 

обладающие оптимальными коллоидно-

химическими свойствами. 

Экспериментальная часть 

Объекты исследования – водные дисперсии 

эпоксидно-дианового олигомера, смолы на основе 

бисфенола А и эпихлоргидрина (ГОСТ 10587-84), 

произведенной в Российской Федерации: 

 

,  

 
 

где Х, n ≤ 25 –степень полимеризации. Содержание 

в дисперсиях дисперсной фазы составляло 60 % 

(40 % олигомера + 20 % эпоксидированного рапсо-

вого масла (ЭРМ)). Их свойства, приведенные в таб-

лице 1, были определены по ГОСТ 10587-84, ГОСТ 

5476-80, ГОСТ 12497-93, а их плотность (Density 

Standard DI 12, Silicon) и поверхностное натяжение 

методом отрыва кольца были измерены на тензио-

метре К-100 МК 2.  

Олигомер представляет собой вязкую прозрач-

ную жидкость светло-желтого цвета, хорошо рас-

творимую в кетонах, толуоле, хлорированных угле-

водородах и других органических растворителях; 

нерастворимую в воде, бензине и ограниченно рас-

творимую в спиртах. 
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Таблица 1 – Свойства эпоксидно-дианового оли-

гомера и ЭРМ 

Table 1 – Properties of epoxy-dianoic oligomer and 

epoxidized rapeseed oil (ERO) 

Олигомер ЭРМ 

Эпоксидное число, % 21.3 Эпоксидное 

число, % 

4.7 

Эпоксидный эквива-

лент, г/моль 

202 Эпоксидный 

эквивалент, 

г/моль 

907 

Вязкость при 25 0С, 

Па∙с 

17±3 Кислотное 

число, мг 

КОН/г 

6.9 

Массовая доля 

летучих веществ, % 

0.5 Кислотность 

по олеиновой 

кислоте, % 

3.5 

Плотность при 75 0С, 

кг/ м3 

1130 Плотность при 

30 0С, кг/ м3 

914 

Поверхностное натя-

жение 

при 75 0С, мН/м 

42.3 Поверхностное 

натяжение при 

30 0С, мН/м 

32.1 

Молекулярная масса: 

среднечисленная (Мn) 

среднемассовая (Mw) 

вискозиметрическая 

(Mv) 

Mw/Mn 

 

390 

430 

 

370 

1.1 

–– 

 

При получении дисперсий в качестве эмульгато-

ров использовали анионные ПАВ: олеиновую кис-

лоту (ОК) и олеат триэтаноламина (ОТЭА), которые 

содержат в молекуле полярные группы и гидрофоб-

ную часть, а также диссоциируют в водном растворе 

при рН ≥ 7 с образованием длинноцепочечных орга-

нических анионов, которые определяют их поверх-

ностную активность. Они имеют линейную (ОК) и 

разветвленную (ОТЭА) структуру, обладают ярко 

выраженной способностью образовывать в водных 

растворах водородные связи за счет карбонильных и 

аминогрупп. 

Особенно это характерно для ОТЭА, который 

образует более сильную водородную связь между 

неподеленной парой электронов азота и водородом 

воды, что подтверждается высокой нуклеофильно-

стью третичного атома азота и силовым полем 

функциональных групп Ω, которое определяется по 

отношению свободной энергии межмолекулярного 

взаимодействия отдельной функциональной группы 

с водой ΔG´B на единицу ее площади поверхности 

S´:    

Ω=
/

/

S

GB . 

Ω для третичной аминогруппы ОТЭА в воде состав-

ляет 2010-2 Дж/м2, в отличие от Ω =14,610-2 

Дж/м2 для карбонильной группы в ОК [29]. 

Измерение поверхностного натяжения 

для водных растворов исследуемых ПАВ при 

рН=11.5 было проведено на границе раздела жид-

кость / воздух в изотермических условиях 

Т=30±0.5 ºC методом отрыва стандартного платино-

вого кольца (глубина погружения 16 мм, скорость 5 

мм/мин) на автоматическом приборе «Процессор-

тензиометр К100 МК2» (KRÜSS GmbH, Германия) с 

программным обеспечением LabDesk™ и методом 

коррекции Харкинса-Джордана. Поверхностное 

натяжение растворов рассчитывалось по формуле: 






cos

max

L

FF V , 

где   – поверхностное натяжение жидкости, мН/м; 

L – длина смачивания, м;   – угол смачивания, 

град; Fmax – максимальная сила отрыва кольца, мН; 

FV – сила, учитывающая вес поднятой жидко-

сти, мН [30].  

Графики поверхностного натяжения исследуе-

мых эмульгаторов (рис. 1) имеют типичный вид, где 

поверхностное натяжение уменьшается с увеличе-

нием концентрации ПАВ вплоть до излома – крити-

ческой концентрации мицеллообразования (ККМ), 

что говорит о процессе активного насыщения на 

межфазной границе адсорбционного слоя молеку-

лами ПАВ. При близкой к ККМ концентрации за-

вершается образование мономолекулярного слоя 

ПАВ, при этом достигается максимальное значение 

адсорбции. Дальнейшее добавление ПАВ приводит 

к мицеллообразованию в объеме раствора и уже 

практически не влияет на величину поверхностного 

натяжения [30]. 

 

 
Рис. 1 – Изотермы поверхностного натяжения σ 

для водных растворов исследуемых ПАВ в ще-

лочной среде: 1 – ОК, 2 – ОТЭА  

Fig. 1 – Surface tension isotherms σ for aqueous so-

lutions of the studied surfactants in an alkaline envi-

ronment: 1 – oleic acid (OA) and 2 – triethanolamine 

oleate (TEAO) 

 

Коллоидно-химические и адсорбционные харак-

теристики ПАВ, определенные в соответствии с 

формулами в работе [30], приведены в табл. 2: по-

верхностное натяжение σККМ при достижении кри-

тической концентрации мицеллообразования СККМ, 

площадь, приходящаяся на одну молекулу в адсорб-

ционном слое Sm, максимальная адсорбция на гра-

нице раздела раствор/воздух Гm, свободная энергия 

адсорбции Гиббса G. 
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Таблица 2 – Коллоидно-химические характери-

стики водных растворов анионных ПАВ  

Table 2 – Colloid-chemical characteristics of aque-

ous solutions of anionic surfactants 

ПАВ 

С 

ККМ, 

г/л 

σККМ, 

мН/м 

Гm·10-6, 

моль/м2 

Sm· 

10-20, 

м2 

-G·103, 

Дж/моль 

ОК 0.079 29.11 2.26 73.37 30.74 

ОТЭА 0.228 29.94 2.62 63.37 29.03 

 

На основании анализа данных, приведенных в 

таблице 2, видно, что для ОК образование мицелл в 

растворах наблюдается в области более низких кон-

центраций, для нее также наблюдается наибольшая 

поверхностная активность. В то же время, для 

ОТЭА СККМ ~ в три раза выше, что смещает мицел-

лообразование в более высокую область концентра-

ций, но его максимальная адсорбция Гm доказывает 

образование более плотного адсорбционного слоя 

данного ПАВ на границе раздела раствор/воздух, 

который будет оказывать стабилизирующее дей-

ствие и повышать агрегативную устойчивость си-

стемы.  

Кроме того, важным параметром для молекул 

ПАВ является гидрофильно-липофильным балан-

сом (ГЛБ), который позволяет количественно с 

энергетических позиций выразить степень сродства 

отдельных функциональных групп ПАВ к воде и мас-

лу, а также охарактеризовать их способность стабили-

зировать эмульсии [30]. ГЛБ имеет значение для оцен-

ки поверхностных и объемных свойств ПАВ и области 

их применения, так как он является соотношением 

противоположных гидрофильных и гидрофобных 

групп молекулы ПАВ. Высокие числа ГЛБ – 20.2 для 

ОК и 20.7 для ОТЭА – наглядно демонстрируют, что 

исследуемые ПАВ являются эффективными эмуль-

гаторами для дисперсных систем.  

Процесс получения дисперсий из двухфазных 

смесей дисперсной фазы и воды совмещал механи-

ческое и химическое воздействие:  

1) адсорбционное самопроизвольное эмульги-

рование при 65-75 0С водного раствора ПАВ и смеси 

олигомера, пластифицированного ЭРМ; 

2) диспергирование до получения жидкой од-

нородной системы молочно-белого цвета на ротор-

но-статорном диспергаторе ULTRA-TURRAX T 25 

basic (IKAR-WERKE, Германия) со скоростью вра-

щения ротора 9500 – 13500 мин-1. 

В результате получены водные дисперсии, со-

держащие следующие ПАВ: ЭД-1 – 1.2 мас. % ОК; 

ЭД-2 – 1.2 мас. % ОТЭА; ЭД-3 – 2.4 мас. % ОК, а 

также проведен сравнительный анализ их физико-

химических свойств. 

Модифицирование межфазной поверхности дис-

персных систем различными ПАВ является обще-

принятым методом регулирования процессов струк-

турообразования и повышения устойчивости дис-

персных систем, позволяющим целенаправленно 

изменять структурно-механические свойства [31].  

Агрегативная устойчивость дисперсий определя-

ется механической прочностью адсорбционных ста-

билизирующих слоев, которые образуются на по-

верхности всех частиц и препятствуют их агрегиро-

ванию и коалесценции. Наибольший стабилизиру-

ющий эффект соответствует определенному опти-

муму структурно-механических свойств защитного 

слоя [32, 33]. Для эпоксидных дисперсий он будет 

определяться химической природой и строением, а 

также концентрацией применяемого эмульгатора. 

Наиболее полную информацию о происходящих в 

системе структурных изменениях под действием 

деформаций можно получить в результате оценки 

структурно-реологических свойств (рисунок 2 и 

таблица 3). 

В связи с этим, проведены исследования полу-

ченных дисперсий на ротационном вискозиметре 

«Реотест-2» (RHEOTEST Messgeräte Medingen 

GmbH, Германия) при Т=25±1 ºС, применяя для из-

мерений систему коаксиальных цилиндров S1, масса 

исследуемых образцов составляла 25 г.  

 

 
а 

 
б 

 

Рис. 2 – Графики зависимостей для исследуемых 

ЭД (1 – ЭД-1, 2 – ЭД-2, 3 – ЭД-3): а) зависимость 

динамической вязкости η от скорости сдвига Dr, 

б) реологические кривые течения дисперсий от 

напряжения сдвига τr 

Fig. 2 – Dependency graphs for the studied EDs (1 – 

ED-1, 2 – ED-2, 3 – ED-3): a) dependence of dynamic 

viscosity η on shear rate Dr, b) rheological curves of 

dispersion flow from shear stress τr 
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Таблица 3 – Структурно-реологические параметры для исследуемых дисперсий 

Table 3 – Structural and rheological parameters for the dispersions under investigation 

Объект  Pk1, Па η0
* 103, Па·с Pk2, Па ηm

*103, 

Па·с 

Pm, Па Pk2/Pk1 Pm/Pk1 

ЭД-1 0.59 14.52 2.50 10.75 14.11 4.24 23.92 

ЭД-2 0.59 8.07 1.29 5.38 7.06 2.20 12 

ЭД-3 1.18 10.6 2.44 7.17 9.41 2.07 7.97 

 

В результате экспериментов на основании зави-

симостей η= f (Dr) (рисунок 2, а) установлено, что 

исследуемые дисперсии не подчиняются законам 

Эйнштейна, Ньютона и Пуазейля, для них характер-

на аномалия вязкости, то есть они являются жидко-

образными неньютоновскими системами. 

На графиках зависимостей Dr=f (τr) для исследу-

емых дисперсий (рисунок 2, б) можно выделить не-

сколько областей, различающихся по своей физиче-

ской природе. Вплоть до условного статистического 

предела текучести Pk1 на кривых отчетливо видны 

ярко выраженные условно-упругоэластические 

участки, в которых деформации полностью обрати-

мы. Выше Pk1 следует область, в которой течение 

дисперсий характеризуется наибольшей пластиче-

ской вязкостью η0
*. В этой области происходят не-

значительный разрыв связей, которые успевают вос-

становиться при низких скоростях сдвига. Выше 

предела текучести Бингама Pk2 наблюдается течение 

слоя с минимальной пластической вязкостью. При 

более высоких скоростях сдвига в исследуемых си-

стемах структурная сетка разрушается (Pm – пре-

дельное напряжение, соответствующее разрушению 

структуры), а вязкость падает (ηm
* – наименьшая 

пластическая (бингамовская) вязкость). Таким обра-

зом, в исследуемых дисперсиях наблюдается коагу-

ляционное структурообразование, что подтверждено 

наличием двух условных пределов текучести Pk1 и 

Pk2 [33].  

Оценить степень структурирования и прочность 

взаимодействий между структурными элементами в 

коллоидных дисперсиях можно на основании срав-

нения рассчитанных структурно-реологических па-

раметров, приведенных в таблице 3.  

Как видно из данных, представленных в табл. 3, 

отношения пределов прочности структурных связей 

Pk2/Pk1 и Pm/Pk1 для исследуемых дисперсий можно 

расположить в следующий ряд:  

ЭД-1 > ЭД-2 > ЭД-3 

Это, по-видимому, можно объяснить большим 

содержанием в системе эмульгированных капелек 

масла, стабилизированных прочным адсорбцион-

ным слоем молекул ПАВ. Из данных таблицы 3 

видно, что величина аномалии вязкости (η0
* - ηm

*) 

для эмульсии ЭД-1 в 1.4 раза больше, а значения 

отношения пределов прочности Pk2/Pk1 и Pm/Pk1 при-

близительно в 2 раза превышают эти параметры для 

ЭД-2. Полученные результаты свидетельствуют о 

том, что для ЭД-1 характерны более прочные взаи-

модействия между структурными элементами и вы-

сокая степень структурирования, что подтверждает-

ся большим значением напряжения Pm, которое ука-

зывает на разрыв сплошности при более высоких 

градиентах скорости для ЭД-1. Это связано с обра-

зованием более прочных адсорбционных слоев на 

поверхности эмульгированных капелек при исполь-

зовании в качестве эмульгатора ОК, что дает воз-

можность получить устойчивые эпоксидные дис-

персии, характеризующиеся более высокой прочно-

стью структурных связей. 

Это обеспечивает для ЭД-1 более длительный 

период устойчивости при хранении. ЭД-3 устойчива 

меньше всего, поскольку при увеличении концен-

трации олеиновой кислоты образуются более грубо-

дисперсные системы, что связано с изменением 

структуры межфазных мицеллярных слоев, в ре-

зультате чего постепенно происходит коалесценция 

эмульгированных капель масла. 

Для оценки размера частиц (капель) в дисперси-

ях эпоксидно-дианового олигомера, стабилизиро-

ванных ПАВ, применялся дисперсионный анализ. 

Для этого использовался автоматический прибор 

«Фотоседиментометр ФСХ-4» (ПКГ «Гранат», Рос-

сия) с программным обеспечением «Лабнаучпри-

бор», принцип действия которого основан на зако-

нах седиментации Стокса [8] и Бугера-Ламберта-

Бера о затухании излучения в мутных средах [33].  

В результате проведенного анализа данных по-

лучена полная характеристика распределения ка-

пель дисперсий по размерам (гранулометрический 

состав) и рассчитаны интегральное и дифференци-

альное распределение масс и числа частиц по разме-

рам, а также их статистические характеристики – 

среднеарифметический и медианный диаметры ча-

стиц и удельная поверхность (отношение суммарной 

площади поверхности частиц дисперсии к их сум-

марному объему или массе).  

Результаты исследования распределения частиц 

полученных дисперсий по размерам приводятся на 

рисунке 3 и в таблице 4. 

Из анализа результатов видно, что самым широ-

ким распределением частиц по размеру обладает 

ЭД-3, а остальные две дисперсии незначительно 

отличаются друг от друга. 

Для ЭД-3 характерен самый большой медианный 

(соответствующий содержанию 50 % частиц на кри-

вой интегрального распределения), среднеарифме-

тический диаметр частиц и самая малая удельная 

поверхность. 

Это подтверждают результаты структурно-

реологических испытаний и доказывают для ЭД-3 

самую быструю коалесценцию частиц и наимень-

шую стабильность. ЭД-1 и ЭД-2, содержащие в 2 

раза меньше ПАВ, показывают значительно лучшие 

результаты по гранулометрическому составу и 

структурно-реологическим параметрам. При этом 

самой эффективной проявляет себя ЭД-1, характе-

ризующаяся самым малым медианным диаметром 
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частиц 2.9 мкм и максимальной удельной поверхно-

стью 2.58 м2/г. 

 

 
 

Рис. 3 – Интегральное распределение частиц в 

дисперсиях, где Q – массовое содержание в ис-

следуемой пробе частиц, диаметры которых пре-

восходят диаметр частиц, отложенный на оси 

абсцисс: 1 – ЭД-1, 2 – ЭД-2, 3 – ЭД-3 

Fig. 3 – Integral distribution of particles in disper-

sions, where Q is the mass content in the test sample 

of particles whose diameters exceed the particle di-

ameter plotted on the x-axis: 1 – ED-1, 2 – ED-2, 3 – 

ED-3 

 

Проведены исследования электрокинетических 

свойств дисперсий (таблица 4), обусловленных 

наличием двойного электрического слоя, которые 

необходимы для оценки агрегативной устойчивости 

дисперсной системы.  

Для этого использовали автоматический микро-

электрофорометр «Zetaphoremeter IV» 

(CAD Instrumentation, Франция) с программным 

обеспечением ZetaCad, позволяющий на основании 

измеренной электрофоретической подвижности ча-

стиц устанавливать знак и величину электрокинети-

ческого потенциала ζ [33], который определен на 

основании экспериментальных наблюдений за ско-

ростью электрофореза по уравнению Гельмгольца-

Смолуховского:  

ζ =




0

0u
, 

где ζ – электрокинетический потенциал, мВ; u0 – 

постоянная линейная скорость жидкости, м/с; η – 

вязкость жидкости, мПа·с; Е – напряженность 

внешнего электрического поля, В/см; ε0 – диэлек-

трическая проницаемость вакуума (электрическая 

постоянная), ε – диэлектрическая проницаемость 

среды, Ф/м. Причем отношение скорости движения 

дисперсной фазы u0 к напряженности электрическо-

го поля Е называют электрофоретической подвиж-

ностью (μ), мкм/См/В/см.  

Данные таблицы 4 демонстрируют, что электро-

кинетический потенциал ζ-потенциала прямо про-

порционален значениям электрофоретической по-

движности μ. Отрицательный знак электрокинети-

ческих показателей объясняется присутствием в 

исследуемой системе отрицательно заряженных 

длинноцепочечных органических олеат-ионов, обра-

зующихся при диссоциации анионных ПАВ в дис-

персионной среде.  

Увеличение ζ-потенциала для дисперсий свиде-

тельствует о том, что на поверхности частиц форми-

руется плотный адсорбционный слой ПАВ из более 

крупных мицеллярных агрегатов на межфазной гра-

нице раздела фаз. 
 

Таблица 4 – Дифференциальное распределение 

частиц в дисперсиях и их электрокинетические 

свойства 

Table 4 – Differential distribution of particles in dis-

persions and their electrokinetic properties 

 

Диаметр частиц D, 

мкм 

Дифференциальное мас-

совое распределение ча-

стиц по размерам 

ΔQ, % 

ЭД-1 ЭД-2 ЭД-3 

0-2 45.9 36.8 17.7 

2-3 5.0 11.9 7.5 

3-5 2.0 5.0 2.0 

5-7 1.2 1.5 0.9 

7-10 2.0 2.5 1.4 

10-14 2.8 3.5 2.1 

14-20 4.4 5.6 3.4 

20-28 6.3 8.1 5.1 

28-40 10.1 11.8 8.7 

40-63 20.3 13.2 19.9 

63-100 0 0 31.3 

Медианный диаметр 

частиц, мкм 

2.9 3.2 41.6 

Среднеарифметический 

диаметр частиц, мкм 

17.3 14.6 40.5 

Удельная поверхность 

материала, м2/г 

2.58 2.32 1.20 

Электрокинетические свойства дисперсий 

Электрофоретическая 

подвижность μ, 

мкм/См/В/см 

-2.17 -1.83 -2.53 

Электрокинетический 

потенциал ζ, мВ 

-30.76 -25.87 -35.75 

Электропроводность, 

мСм/см 

0.029 0.028 0.039 

 

Однако, для ЭД-3 быстрее всего происходит сли-

яние мелких капель в крупные с конечным выделе-

нием вещества дисперсной фазы в гомогенный слой, 

поэтому она проявила себя, как наиболее неста-

бильная (время устойчивости – 40 суток). При этом, 

следует отметить, что дисперсии ЭД-1 и ЭД-2 более 

стабильны при хранении, поскольку устойчивы к 

расслоению в течение 58 и 45 суток соответственно. 

Для подтверждения полученных выводов на ри-

сунке 4 приводятся результаты исследований, полу-

ченных методом оптической микроскопии. Визу-

альное наблюдение за морфологией дисперсий про-

ведено на медицинском микроскопе МИКМЕД-5 

(открытого акционерного общества «ЛОМО», Рос-
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сия) с общим увеличением × 100 раз по методу 

светлого поля при использовании бинокулярной 

насадки в проходящем свете. Микрофотографии 

объектов исследования получены с помощью мало-

форматной цветной камеры «DCM-130», подклю-

ченной к персональному компьютеру, и программы 

ArcSoft WebCam Companion.  

На микрофотографиях четко видно, что ЭД-1 и 

ЭД-2 значительно однороднее и более мелкодис-

персные по сравнению с ЭД-3. 

 

  
а б 

 
в 

 

Рис. 4 – Микроскопические фотографии исследу-

емых дисперсий с увеличением × 100 раз: а – ЭД-

1, б – ЭД-2, в – ЭД-3 

Fig. 4 – Microscopic photographs of the studied dis-

persions at 100× magnification: a – ED-1, b – ED-2, c 

– ED-3 
 

Основываясь на результатах проведенных экспе-

риментов, выяснено, что суммарно по структурно-

реологическим, дисперсионным и электрокинетиче-

ским характеристикам полученные дисперсии мож-

но расположить в следующий ряд: 

ЭД-1 > ЭД-2 > ЭД-3. 

Установлено, что для получения защитных по-

крытий с низкой водопроницаемостью и водопо-

глощением на основании стабильных пленкообра-

зующих дисперсий, эффективнее всего использовать 

более однородную и мелкодисперсную эпоксидную 

ЭД-1, в составе которой использована в качестве 

эмульгатора олеиновая кислота, характеризуемую 

самым малым медианным диаметром частиц и мак-

симальной удельной поверхностью, более прочны-

ми структурными связями, что способствует более 

длительному сохранению агрегативной устойчиво-

сти дисперсной системы. 
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