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Генерация видео является одной из наиболее актуальных и сложных задач в области искусственного интел-

лекта и компьютерного зрения. Ее решение открывает широкие возможности для креативных индустрий, биз-

неса, образования, маркетинга. Однако генерация продолжительного, семантически связного видео с высоким 

разрешением остается нерешенной проблемой. Этим объясняется необходимость создания новых, а также 

исследования уже существующих моделей. В данной статье проводится сравнительный анализ основных ме-

тодов генерации видео: вариационных автоэнкодеров (VAE), генеративно-состязательных сетей (GAN), авто-

регрессионных, flow-based и диффузионных моделей. Рассматриваются их ключевые архитектурные особенно-

сти, достоинства и недостатки. Особое внимание в работе уделено диффузионным моделям, которые на дан-

ный момент являются передовым подходом для решения задачи генерации видео. За последние несколько лет 

появилось огромное количество диффузионных моделей генерации видео, среди которых наиболее известными 

являются Sora (OpenAI), Gen-3 (Runway), Kandinsky (Sber AI), Stable Video Diffusion (Stability AI). Однако боль-

шинство из них являются закрытыми, коммерческими продуктами, исходный код и архитектура которых не-

доступны для исследования и модификации. Для реализации генерации в работе используется диффузионная 

модель с открытым исходным кодом Stable Video Diffusion. Практическая часть исследования включает гене-

рацию видео на основе исходного изображения подстилающей поверхности, а также анализ полученного ре-

зультата. Сгенерированные видеопоследовательности могут быть использованы для симуляции различных по-

летных сценариев и расширения датасетов для беспилотных летательных аппаратов (БПЛА). В ходе анализа 

качества сгенерированного видео выявлено, что для предотвращения накопления артефактов и ошибок генера-

ции требуется дополнительная обработка последовательности кадров после 10-13 кадра видео. Анализ прово-

дился с помощью набора метрик, отражающих изменение цветовых характеристик и текстуры сгенерирован-

ного видео.  

 

D. A. Kolobova, M. P. Shleimovich 

VIDEO GENERATION OF THE UNDERLYING SURFACE BASED ON A SINGLE IMAGE 

Keywords: neural networks, video generation, image processing, frame, diffusion models, interpolation, color characteristics. 

 
Video generation is one of the most urgent and challenging tasks in the field of artificial intelligence and computer vision. 

Solution of this task opens up wide opportunities for creative industries, business, education, and marketing. However, 

generating long-lasting, semantically coherent high-resolution video remains an unsolved problem. This explains      ne-

cessity to create new models, as well as research existing models. This article provides a comparative analysis of the 

main methods of video generation: variational autoencoders (VAE), generative-adversarial networks (GAN), autoregres-

sive, flow-based and diffusion models. Their key architectural features, advantages and disadvantages are considered. 

Special attention is paid to diffusion models, which are currently an advanced approach for solving the problem of video 

generation. Over the past few years, a huge number of diffusion video generation models have appeared, among which 

the most famous are Sora (OpenAI), Gen-3 (Runway), Kandinsky (Sber AI), Stable Video Diffusion (Stability AI). How-

ever, most of them are closed, commercial products, the source code and architecture of which are inaccessible for 

research and modification. The open source Stable Video Diffusion model is used to implement the generation. The 

practical part of the study includes video generation based on the original image of the underlying surface, as well as 

analysis of the result. The generated video sequences can be used to simulate various flight scenarios and expand datasets 

for unmanned aerial vehicles (UAVs). During the analysis of the quality of the generated video, it was revealed that 

additional processing of the sequence of frames after 10-13 frames of the video is required to prevent the accumulation 

of artifacts and generation errors. The analysis was carried out using a set of metrics reflecting changes in the color 

characteristics and texture of the generated video. 

 

 

 

Введение 

Генерация видео — это создание видео с помо-

щью алгоритмов искусственного интеллекта на ос-

нове текстовых подсказок, изображений, сценариев 

или даже речи. Она позволяет превращать простые 

запросы в динамичный видеоконтент. 

Генерация позволяет создавать новые данные при 

недостатке их для обучения моделей. Также она поз-

воляет увеличить их разнообразие, учитывая различ-

ные условия освещения, контент, ракурсы для улуч-

шения обобщающей способности моделей. 

Как у любой другой задачи, у генерации видео 

есть свои технические особенности, а именно: 

1) Создание видео требует значительно больше 

вычислительных ресурсов, чем генерация статичных 

изображений. 

2) Искусственный интеллект должен понимать 

временную согласованность, физику движения и 

причинно-следственные связи в трехмерном про-

странстве. 

Данные особенности являются причиной сложно-

сти подобной задачи, в связи с чем в открытом до-

ступе до сих нет модели генерации видео, удовлетво-
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ряющей сразу трем показателям: качество видео, ско-

рость генерации, длительность видео. Поэтому ос-

новной задачей в области генерации видео на теку-

щий момент является создание продолжительного 

видео (более минуты) высокого качества (FullHD) 

при уменьшении вычислительных и временных за-

трат.  

Генерация видео с помощью искусственного ин-

теллекта применяется в самых разных областях — от 

маркетинга и развлечений до образования и дизайна, 

например [1]: 

1) Кинопроизводство и анимация. Генератив-

ные модели используются для создания спецэффек-

тов, реалистичной анимации персонажей и фоновых 

сцен; 

2) Игровая индустрия. Технология применя-

ется для создания игровых сцен, генерации анимиро-

ванных персонажей и динамического контента; 

3) Социальные сети. В социальных сетях гене-

рация видео помогает создавать контент, привлекаю-

щий внимание пользователей; 

4) Маркетинг. Компании используют генера-

цию для быстрого создания персонализированных 

рекламных видеороликов. 

5) Интерактивные видеоуроки. Генерация ви-

део позволяет создавать увлекательные и наглядные 

обучающие материалы, например, анимированные 

объяснения сложных понятий. 

6) Виртуальные симуляторы. Генерация видео 

помогает создавать симуляции для обучения, напри-

мер, моделируя сложные научные эксперименты или 

рабочие ситуации. 

7) Цифровое искусство. Художники и дизай-

неры используют генерацию видео для создания уни-

кальных анимированных произведений, эксперимен-

тируя с различными стилями и эффектами. 

Также в последнее время получила развитие идея 

создания модели мира (General world model). Это си-

стема искусственного интеллекта, которая имеет 

внутреннее представление об окружающей среде и 

использует его для моделирования будущих событий 

в этой среде, т.е. понимает окружающий мир, его фи-

зику и способна предсказывать отклик на свои дей-

ствия или внешние события. Хорошая модель гене-

рации видео для имитации физики реального мира 

должна его понимать. Поэтому создание моделей ге-

нерации видео высокого качества - перспективный 

путь к созданию универсальных симуляторов физи-

ческого мира. Модель мира, в свою очередь, позво-

лит обучать автономные транспортные средства, ро-

ботов и т.д. действиям в окружающем мире [2,3]. 

Например, GAIA-1 от Wayve - это генеративная 

модель мира для автономного вождения. GAIA-1 ис-

пользует возможности диффузионных моделей для 

генерации видео - реалистичных сценариев вожде-

ния. Таким образом, она может использоваться как 

продвинутый симулятор, позволяющий генерировать 

неограниченное количество данных, включая при-

меры для обучения и проверки систем автономного 

вождения [4]. 

Подобные модели также могут быть использо-

ваны для обучения беспилотных летательных аппа-

ратов (БПЛА). Разработка таких моделей позволила 

бы генерировать реалистичные сценарии полета в 

различных условиях: городской среде, сложных по-

годных условиях (дождь, снег, туман), появление 

препятствий, отказ системы, а также симулировать 

различные полетные сценарии (доставка, съемка, 

взлет, посадка, обнаружение объектов и т.д.). 

За последние несколько лет появилось огромное 

количество моделей генерации видео, среди которых 

наиболее известными являются Sora (OpenAI), Veo 

(Google), Gen-3 (Runway), Kandinsky (Sber AI), Stable 

Video Diffusion (Stability AI). Однако большинство из 

этих моделей являются закрытыми, коммерческими 

продуктами, исходный код и архитектура которых 

недоступны для исследования и модификации. В 

условиях такой закрытости остро ощущается необхо-

димость как создания новых моделей, способных ге-

нерировать длительные видео без потери простран-

ственно-временной согласованности, так и усовер-

шенствования существующих открытых подходов. 

Например, модель Video LDM (Video Latent Diffusion 

Model) была разработана на базе модели Stable Diffu-

sion и способна генерировать высококачественные 

видео на основе текстовых запросов с разрешением 

до 1280×2048 пикселей [5]. 

Исследование возможностей моделей с открытым 

исходным кодом, их ограничений и артефактов гене-

рации является основой для будущих работ в области 

генерации видео — будь то создание новых архитек-

тур или оптимизация существующих. Именно по-

этому целью данной работы является исследование 

методов генерации видео и способов улучшения его 

качества на основе анализа цветовых и текстурных 

характеристик. Такой анализ позволяет не только 

оценить текущее состояние открытых моделей, но и 

обосновать необходимость применения методов по-

стобработки, направленных на устранение выявлен-

ных недостатков и приближение качества открытых 

решений к уровню их закрытых аналогов.  

Обзор существующих методов 

Методы генерации данных появились задолго до 

появления нейронных сетей. К таким методам отно-

сятся метод Монте-Карло, марковские цепи и авто-

корреляционные модели. Однако эти методы имели 

ограниченные возможности и не могли создавать 

сложные структуры данных, такие как изображения. 

Но они стали основой для создания первых генера-

тивных нейронных сетей. 

Одной из первых архитектур генеративных 

нейронных сетей были автокодировщики (AE) и их 

улучшенная версия – вариационные автокодиров-

щики (VAE) [6]. В архитектуре AE есть три главных 

компонента: кодировщик, латентное пространство и 

декодер [7]. Кодировщик переводит входные данные 

в более компактное пространство, называемое ла-

тентным, а декодер восстанавливает их. Изначально, 

благодаря своей способности представлять данные в 

пространстве более низкой размерности, их исполь-

зовали для сжатия/восстановления данных. Ключе-

вая особенность появившихся в 2013 году VAE за-

ключается в том, что он обучается не просто сжимать 

данные, а изучать вероятностное распределение 
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этого латентного пространства, что позволяет гене-

рировать новые, разнообразные примеры данных [6]. 

Недостатком VAE является генерация размытых 

изображений. Однако их способность уменьшать 

размерность данных впоследствии была применена в 

других методах генерации изображений и видео, 

например, в латентных диффузионных моделях [5]. 

В 2014 году появилась новая архитектура – гене-

ративные состязательные сети (GAN) [8]. GAN со-

стоит из двух сетей – генератора и дискриминатора, 

«соревнующихся» между собой. Генератор учится 

создавать реалистичные изображения из случайного 

шума, а дискриминатор пытается отличить сгенери-

рованные изображения от реальных. В контексте ге-

нерации видео генератор преобразует шум в кадры 

видео, стараясь соблюсти логическую связанность 

последовательности кадров, а дискриминатор оцени-

вает реалистичность получившегося видео, инфор-

мируя об этом генератор [9]. Позднее было создано 

множество различных версий архитектуры, улучша-

ющих качество получаемых изображений (DCGAN), 

а также позволяющих контролировать генерацию: 

появилась возможность указывать класс генерируе-

мых изображений (CGAN), стиль (StyleGAN), тек-

стовое описание (StackGAN), подавать на вход ис-

ходное изображение, часть видео [10]. Недостатком 

GANs является нестабильность обучения, требую-

щая точной настройки параметров, высокие требова-

ния к вычислительным ресурсам и большие времен-

ные затраты при обучении, а также эффект «mode 

collapse» - ограниченное количество сгенерирован-

ных образцов. 

Примерно в то же время, что и GANs, появились 

Flow-based модели (например, модель GLOW). Эти 

модели используют серию обратимых преобразова-

ний (потоков) для отображения простого базового 

распределения (например, гауссового шума) на 

сложное распределение данных [11]. Обратимость 

преобразований заключается в том, что можно как ге-

нерировать данные из простого распределения 

(например, гауссова), так и вычислять плотность дан-

ных, которые уже были сгенерированы. Основная 

идея — найти "поток", который соединяет шум с дан-

ными. Они быстрые и точные, а также позволяют 

точно оценивать правдоподобие, но требовательны к 

вычислительным ресурсам и обладают сложной ар-

хитектурой. 

Авторегрессионные модели позволяют генериро-

вать длинные видео благодаря последовательной ге-

нерации - каждый кадр генерируется на основе 

предыдущего, что позволяет увеличить согласован-

ность кадров в продолжение видео [10]. В рамках 

этой концепции пространственные соотношения 

между фрагментами имеют решающее значение, по-

скольку каждый последующий фрагмент должен 

быть идеально выровнен с соседними, чтобы обеспе-

чить визуальную согласованность во всем кадре. 

Этот метод использует пространственные зависимо-

сти, присущие видеоконтенту, гарантируя, что по 

мере развития видео каждый кадр остается согласо-

ванным с предыдущим не только во времени, но и в 

пространстве. Однако последовательная генерация 

кадров связана с большими вычислительными затра-

тами и низкой скоростью работы. 

Настоящим прорывом в области генерации изоб-

ражений и видео стали диффузионные модели. Идея 

провести аналогию между свойствами термодинами-

ческой диффузии и глубоким обучением появилась 

еще в 2015 году, но ее настоящее развитие началось 

после 2020 года. Процесс генерации в диффузионных 

моделях состоит из двух этапов: 

 Прямой процесс: исходное изображение или 

видео постепенно, шаг за шагом, зашумляется добав-

лением гауссовского шума. После множества итера-

ций данные превращаются в практически чистый 

шум; 

 Обратный процесс: нейронная сеть обуча-

ется постепенно удалять шум на каждом шаге, вос-

станавливая данные. Именно этот процесс и исполь-

зуется для генерации новых видео из шума. Шум уда-

ляется на основе как пространственного содержания 

отдельных кадров, так и временных соотношений 

между последовательными кадрами. Такой подход 

позволяет создавать видео, в котором каждый кадр не 

только визуально соответствует предыдущему, но и 

делает последовательность кадров плавной [9]. 

Из-за итеративного подхода к зашумлению и шу-

моподавлению процесс обучения и генерации, как 

правило, более стабильный, чем у GAN, восстанавли-

вающих изображение из шума за один временной 

шаг, а результаты получаются качественными и раз-

нообразными. Но это сказывается на скорости гене-

рации.  

Большинство известных современных моделей 

генерации видео, такие как Sora, Stable Video Diffu-

sion, GEN-3, Kandinsky 4 и др., являются диффузион-

ными. 

Таким образом, у каждого метода есть свои досто-

инства и недостатки (см. табл.1), но в каждом новом 

методе применялись ключевые идеи предшествую-

щих подходов, создавая тем самым основу для буду-

щих моделей генерации видео. 

Используемые методы 

В данной работе исследовалась модель генерации 

видео Stable Video Diffusion от Stability AI [12]. SVD 

— это генеративная модель с открытым исходным 

кодом, которая специализируется на преобразовании 

статичных изображений в динамичные видео. Она 

относится к латентным диффузионным моделям [5]. 

Вместо работы непосредственно с пикселями кадров 

видео, что требует большого количества видеопа-

мяти для хранения данных при вычислениях, модель 

работает в сжатом латентном пространстве.  

Архитектура Stable Diffusion состоит из VAE, ко-

дирующего входное изображение в латентное про-

странство и восстанавливающего сгенерированное 

изображение до первоначального размера, и архитек-

туры U-Net, предсказывающая шум и отвечающая 

непосредственно за генерацию изображения. 
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Таблица 1 – Достоинства и недостатки 

Table 1 – Advantages and disadvantages 

Метод Достоинства Недостатки 

VAE 

Один из первых методов генерации 

изображений;  

возможность управлять генерацией. 

Генерация размытых данных 

GAN Скорость генерации 

Нестабильность обучения;  

высокие требования к вычислитель-

ным ресурсам; большие временные 

затраты при обучении;  

эффект «mode collapse» 

Flow-based модели 
Скорость, точность; 

Возможность оценки генерации. 

Требовательность к вычислитель-

ным ресурсам; Сложная архитек-

тура. 

Авторегрессионные модели 
Учет особенностей предыдущего кадра 

для генерации следующего 

Большие вычислительные затраты; 

Низкая скорость. 

Диффузионые модели 

Стабильный процесс обучения и генера-

ции; 

Качественный результат; 

Возможность управления генерацией. 

Требовательность к вычислитель-

ным ресурсам; 

Скорость работы 

При генерации видео сложность заключается в 

том, чтобы преобразовать шум не просто в изображе-

ние, а в серию изображений (кадров), плавно и согла-

сованно меняющихся со временем. Работа со време-

нем требует от модели понимания, как объекты и 

сцена изменяются со временем. Модель SVD иници-

ализируется весами из уже обученной модели Stable 

Diffusion для изображений, но в ее архитектуре есть 

временные слои и слои внимания (spatial cross-

attention layers) [12]. Это позволяет модели учитывать 

особенности других кадров для обеспечения времен-

ной согласованности. Благодаря архитектуре U-Net 

(skip-connections – пропускающие связи между сло-

ями одинаковой размерности [13]) изображение рас-

сматривается на разных уровнях детализации для 

обеспечения пространственной согласованности. 

SVD способна генерировать видео, опираясь на 

исходный кадр. Модель создает параллельно 14/25 

кадров (зависит от выбранной версии) благодаря вре-

менным слоям и слоям внимания. Это обеспечивает 

вычислительную эффективность. Однако недостат-

ком такого подхода является передача ошибки между 

кадрами: ошибка в одном кадре приводит к ошибкам 

в других кадрах. В данной работе влияние ошибки 

показано на примере изменения цветовых и текстур-

ных характеристик кадров видео.  

Для уменьшения влияния ошибок на генерацию 

последующего сегмента видео и финальный резуль-

тат было принято решение проанализировать измене-

ние цветовых характеристик кадров по различным 

метрикам и выявить кадр, с которого следует начи-

нать обработку. 

Для анализа изменений цветовых и текстурных 

характеристик кадра использовались следующие ме-

тоды: 

1) Изменение цветовых координат цветовой 

модели HSV – Hue (тон), Saturation (насыщенность), 

Value (значение/яркость). Тон – это доминирующий 

цвет, воспринимаемый наблюдателем. Насыщен-

ность цвета характеризует количество белого цвета в 

нем; чем выше этот параметр, тем чище цвет. Яр-

кость показывает, насколько цвет яркий или темный. 

Модель HSV наиболее близка к тому, как человек 

воспринимает цвет.  

2) Сравнение гистограмм по трем каналам цве-

товой модели RGB. Гистограмма цифрового изобра-

жения с уровнями яркости в диапазоне [0, L – 1] 

называется дискретная функция h(rk) = nk, где rk есть 

k-й уровень яркости, а nk — число пикселей на изоб-

ражении, имеющих яркость rk. В модели RGB каж-

дый цвет представляется красным, зеленым и синим 

первичными основными цветами (компонентами). 

Для сравнения гистограмм использовались два ме-

тода: с помощью коэффициента корреляции и рас-

стояния Кульбака — Лейблера. Коэффициент корре-

ляции показывает, насколько тесно связаны распре-

деления двух переменных: значение близкое к 1 или 

-1 означает сильную связь (положительную или от-

рицательную соответственно), а значение близкое к 0 

— отсутствие связи. Он задается следующей форму-

лой [14]: 

d(H1, H2) =  
∑ (H1(I) − H1

̅̅̅̅
I )(H2(I) − H2

̅̅̅̅ )

√∑ (H1(I) − H1
̅̅̅̅ )2 ∑ (H2(I) − H2

̅̅̅̅ )2
II

  , 

где H1, H2 – сравниваемые гистограммы. 

Расстояние Кульбака-Лейблера — это мера разли-

чия между двумя вероятностными распределениями, 

которая показывает, насколько одно распределение 

отличается от другого. Оно задается следующей фор-

мулой [14]: 

d(H1, H2) =  ∑ H1(I) log
H1(I)

H2(I)
I

, 

где H1, H2 – сравниваемые гистограммы. 

3) Изменение среднего значения цвета по трем 

каналам модели RGB [15]. Для этого находилось 

среднее значение цвета по изображению. Изменение 

среднего значения цвета находилось по формуле Ев-

клидова расстояния между двумя точками в трехмер-

ном пространстве: 

d =  √(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, 
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где (x1;y1;z1) и (x2;y2;z2) – средние значения по трем 

каналам для каждого изображения. 

4) Расчет цветового различия ΔЕ в цветовой 

модели CIELAB (CIELCH). Система L*a*b* разде-

ляет интенсивность (которая представлена яркостью 

L*) и цветность (которая представлена двумя цвето-

разностями: a* — красный минус зеленый и b* — зе-

леный минус синий). В 1994 году было предложена 

модификация системы CIELAB – CIELCH. При этом 

были предложены полярные координаты цветового 

тона Н и цветности С. Координата Н обозначается 

как h*ab и является «угловой», а координата С обо-

значается как Cab и является «радиальной», относи-

тельно центра координат (оси L*). Они вычисляются 

по формулам [16]: 

Cab
∗ = √(a∗2 + b∗2 ; 

hab
∗ = arctg (

b∗

a∗
)    , 

после чего цветовой тон переводится из радиан в гра-

дусы. 

CIELCH приближает описание цвета к восприя-

тию его человеком. 

Цветовое различие ΔЕ рассчитывается по следу-

ющей формуле: 

ΔЕ =  [(
ΔL

KLSL

)
2

+ (
ΔC

KCSC

)
2

+ (
ΔH

KHSH

)
2

]

1/2

    , 

где ΔL =  L1
∗ − L2

∗ ; ΔC =  C1
∗ − C2

∗; ΔH =

 √Δa2 + Δb2 − ΔC2; KL = 1, KC = 1, KH = 1, SL = 1,

SC = 1 + K1C12
∗  ,   SH = 1 + K2C12

∗  , L12
∗ =

L1
∗ + L2

∗

2
,

C12
∗ =

C1
∗ + C2

∗

2
,   K1 = 1, K2 = 1. 

5) Измерение резкости изображения с помо-

щью Лапласиана [17]. Оператор Лапласа использу-

ется в цифровой обработке изображений для обнару-

жения границ на изображении. Он заключается в из-

мерении скорости изменения интенсивности пиксе-

лей на изображении: высокие значения оператора 

Лапласа указывают на границы между различными 

областями изображения. Оператор Лапласа — это 

оператор производной второго порядка. Он применя-

ется к каждому пикселю изображения и рассчитыва-

ется по следующей формуле: 

∇2f =  
∂2f

∂x2
+

∂2f

∂y2
 . 

После обнаружения краев можно оценить чет-

кость изображения. Чёткое изображение будет иметь 

много обнаруженных краев, что приведёт к большей 

дисперсии значений Лапласиана по всему изображе-

нию. Чем сильнее изображение размыто, тем меньше 

обнаруженных краев и тем ниже значение дисперсии. 

Дисперсия — это мера разброса значений случайной 

величины относительно её математического ожида-

ния. 

6) Измерение энтропии и контраста изображе-

ния. Энтропия — это мера неопределенности или ко-

личества информации. Энтропия увеличивается, ко-

гда изображение становится более сложным, кон-

трастным, зашумленным или детализированным. 

Резкость изображения также влияет на энтропию: 

резкий скачок значений пикселей на границе вносит 

высокую неопределенность в этой конкретной обла-

сти. Энтропия уменьшается, когда изображение ста-

новится более простым, однородным, размытым или 

гладким. Энтропия изображения находится по следу-

ющему алгоритму [18]: 

 Строится гистограмма значений яркости 

изображения; 

 Гистограмма нормализуется путем деления 

частоты каждого значения пикселя на общее количе-

ство пикселей, чтобы получить вероятность pi для 

каждого значения яркости; 

 Для расчета энтропии применяется формула 

энтропии Шеннона: 

H = − ∑ pi ∗ log2 pi

i

 ; 

Контрастность изображения — это разность 

между максимальным и минимальным уровнями яр-

кости в данном изображении [19]. Контрастность и 

энтропия связаны: чем контрастнее изображение 

(резче перепады яркости), тем больше неопределен-

ность, а соответственно и энтропия. 

В данной работе для увеличения продолжитель-

ности видео генерировалось сразу несколько сегмен-

тов, опорным кадром для каждого последующего сег-

мента являлся последний кадр предыдущего, после 

чего сегменты «склеивались». Для уменьшения види-

мых различий между сегментами в местах склейки 

использовались методы интерполяции. Интерполя-

ция ‒ это процесс вычисления промежуточных зна-

чений на основе дискретного набора данных. В кон-

тексте видео интерполяция направлена на увеличе-

ние частоты кадров видеопоследовательности путём 

синтеза одного или нескольких промежуточных кад-

ров между заданными [20].   Математически интер-

поляция представляет собой процесс нахождения 

значения функции f(x) в промежуточной точке x, ос-

новываясь на известных значениях функции в сосед-

них точках f(x−1) и f(x+1). Одним из ключевых пара-

метров при интерполяции видеопотока является ко-

эффициент α, который определяет положение проме-

жуточного кадра относительно исходных кадров. 

Значение α варьируется в пределах [0; 1]: 

α = 0 – соответствует первому исходному кадру, 

α = 1 – соответствует второму исходному кадру, 

а значения в интервале (0;1) соответствуют положе-

нию промежуточных кадров. 

Для генерации нескольких кадров между двумя 

исходными кадрами коэффициент 𝛼 задается в виде 

последовательности:  

αi =
i

n + 1
  , 

где i – номер промежуточного кадра, n – общее коли-

чество генерируемых кадров. Таким образом, коэф-

фициент α позволяет гибко управлять процессом ин-

терполяции, распределяя промежуточные кадры рав-

номерно или с учетом особенностей конкретного ал-

горитма. 

Существует множество методов интерполяции 

кадров, в работе использовались следующие: 

 Линейная интерполяция [21]. Для каждого 

пикселя получаемого в результате интерполяции 

кадра вычисляется взвешенная сумма соответствую-

щих пикселей двух исходных кадров. Это описыва-

ется следующей формулой: 
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g(x) = (1 − α) ∗ f0(x) + αf1(x), 
где α – коэффициент интерполяции, g(x) – пиксель 

результирующего изображения, f0(x), f1(x) – пиксели 

исходных кадров.  

 Интерполяция на основе оптического потока 

(одностороннего и двустороннего). Оптический по-

ток – метод вычисления вектора перемещения объ-

екта между двумя последовательными кадрами, ко-

торое возникает в результате движения непосред-

ственно объектов или снимающей их камеры [20]. 

Таким образом, описывается движение объекта с ин-

тенсивностью I(x, y, t), который по истечении вре-

мени dt перемещается на dx и dy, и его новая интен-

сивность становится равной I(x+dx, y+dy, t+dt).  

В работе использовался плотный оптический по-

ток Гуннара Фарнебака [22]. В этом случае вычисля-

ется смещение всех пикселей кадра относительного 

соседнего, минимизируя разность интенсивностей 

между кадрами.   

Односторонний оптический поток ‒ это подход, 

при котором вычисляется только прямой поток, то 

есть смещения от первого кадра ко второму. Алго-

ритм Фарнебака вычисляет вектор движения flow для 

каждого пикселя первого кадра, создавая карты сме-

щений для координат x и y. Эти карты используются 

для коррекции координат пикселей первого кадра с 

учетом заданного коэффициента интерполяции α: 

{
xnew  =  x +  α ∗  flow
ynew  =  y +  α ∗  flow

  , 

где xnew, ynew – координаты пикселей после смеще-

ния. Новый кадр создается путем «сдвига» пикселей 

исходного кадра на вычисленные новые координаты. 

Двусторонний оптический поток помимо прямого 

потока вычисляет и обратный - смещения от второго 

кадра к первому, после чего полученные промежу-

точные изображения накладываются, образуя новый 

кадр. 

Результаты экспериментов 

Для генерации видео была использована модель 

Stable Video Diffusion (версия SVD-XT) от Stability 

AI. Данная модель позволяет генерировать видео с 

разрешением 576x1024, содержащее 25 кадров. Раз-

работка и тестирование проводились в облачной 

среде Google Colab, предоставляющей GPU, на языке 

программирования Python. В среднем на генерацию 

видео, состоящего из двух сегментов по 25 кадров в 

каждом, общей длительностью 5 сек затрачивалось 

около 15 мин и 11,6 GB VRAM. 

На рис. 1 представлен результат генерации видео, 

состоящего из 55 кадров (50 сгенерированных + 5 ин-

терполированных), общей длительностью 5,5 сек. На 

вход модели генерации подавалось изображение под-

стилающей поверхности, полученное с дрона. Дата-

сет был получен в рамках конкурса «Автономный по-

иск» [23]. Входным изображением для генерации 

второго сегмента видео являлся последний кадр пер-

вого сегмента. Это делалось для уменьшения влия-

ния случайности при генерации следующего сег-

мента.  

Несмотря на то, что место склейки двух сегментов 

практически незаметно человеческому глазу, было 

принято решение применить интерполяцию к полу-

ченным сегментам для создания промежуточных 

кадров между ними. 

 

 

Рис. 1 – Сгенерированное видео 

Fig. 1 – Generated video 

 

При использовании линейной интерполяции в ме-

сте склейки наблюдается дрожание камеры и видно 

наложение кадров (см. рис.1, кадр 27). Это связано с 

математическими особенностями, лежащими в ос-

нове метода.  

При интерполяции методом оптического потока 

наблюдается сдвиг кадра назад. Для нейтрализации 

данного эффекта было принято решение использо-

вать метод двустороннего оптического потока, бла-

годаря которому эффект сдвига кадра удалось устра-

нить, однако в результате наложения полученных 

кадров возникла та же проблема, что и в случае ис-

пользования линейной интерполяции. 

В ходе разработки указывались следующие пара-

метры (см. табл.2): 

 версия – версия модели SVD 

 torch_dtype - формат хранения и вычислений 

с числами с плавающей точкой – для экономии 

VRAM; 

 variant - указание на использование предва-

рительно сконвертированных весов – 16 бит – для 

экономии RAM; 

 num_frames - количество генерируемых кад-

ров; 

 num_inference_steps - количество шагов шу-

моподавления; 

 motion_bucket_id - интенсивность движения 

видео; 

 decode_chunk_size - количество кадров, де-

кодируемых VAE за раз; 

 fps - кадровая частота при воспроизведении; 

 num_segments - количество генерируемых 

сегментов видео; 



Вестник технологического университета. 2025. Т.28, №12 

 130 

 use_interpolation - необходимость интерполя-

ции (True/False); 

 type_interpolation - тип интерполяции (‘lin-

ear’, ‘flow’, ‘biderect_flow’); 

 initial_image_path - путь к исходному изобра-

жению. 

 

Таблица 2 – Настраиваемые параметры 

Table 2 – Configurable parameters  

Параметры модели 

версия SVD-XT 

torch_dtype torch.float16 

variant fp16 

num_frames 25 

num_inference_steps 30 

motion_bucket_id 80 

decode_chunk_size 2 

fps 10 

 

Кадры полученного видео имеют различные цве-

товые и текстурные характеристики. Уже к концу 

первого сегмента видео (см. рис.1, кадр 20) стано-

вится заметным изменение оттенка и насыщенности, 

а также текстуры: контуры объектов становятся бо-

лее четкими, а текстура сглаживается, что приводит 

к потере деталей. Чтобы не подавать на вход следую-

щему сегменту изображение, сильно отличающееся 

от исходного по качеству, необходимо определить 

кадры, с которых нужно начать выполнять дополни-

тельную обработку. 

Для определения кадра, с которого требуется 

начать применять алгоритмы обработки, были ис-

пользованы метрики сравнения всех кадров видео с 

исходным первым кадром: изменение тона, насы-

щенности и яркости, сравнение гистограмм трех со-

ставляющих цвета, изменение среднего по трем кана-

лам, расчет цветового различия ΔЕ, изменение четко-

сти. Также была подсчитана энтропия и контраст-

ность для каждого кадра. 

 

 
Рис. 2 – Сравнение гистограмм 

Fig. 2 – Comparison of histograms 

 

Сравнивая гистограммы по среднему расстоянию 

Кульбака — Лейблера (см. рис.2) можно видеть, что 

медленные изменения цветовых характеристик кадра 

происходят в первые 10 кадров, после 10 кадра 

наблюдается резкое изменение, а затем чего цвет ста-

билизируется. 

 

 

Рис. 3 – Измерение цветовых различий 

Fig. 3 – Measurement of color differences 

 

Был проведен анализ цветовых различий кадров в 

цветовом пространстве CIELAB. На графиках (см. 

рис.3) можно видеть, что ближе к 5 кадру цветовые 

различия становятся неприемлемыми, а такие пока-

затели, как светлота (Lightness) и цветность (Chroma) 

резко меняются после 10 кадра, в то время как тон 

(Hue) стабильно растет. 

Также было сделано измерение энтропии и кон-

трастности изображения. На графиках (см. рис. 4) 

можно видеть, что энтропия растет в то время, как 

растет и контрастность изображения, из чего можно 

сделать вывод, что помимо работы, с цветовыми ком-

понентами, также нужно провести коррекцию кон-

трастности. Также на рис.5 показано изменение ги-

стограммы яркости по мере увеличения контраста. 
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Рис. 4 – Измерение энтропии и контраста 

Fig. 4 – Measurement of entropy and contrast 

 

 

Рис. 5 – Изменение гистограммы яркости (кадр 1, 15, 30, 45) 

Fig. 5 – Change in brightness histogram (frames 1, 15, 30, 45) 

 

Анализ изменения резкости кадра с помощью 

оператора Лапласа показал, что четкость кадра повы-

шается в течение видео. Это происходит из-за увели-

чения контраста, что делает контуры областей изоб-

ражения более резкими, и приводит к увеличению эн-

тропии.  

Результаты измерения изменений компонент цве-

товой моделей HSV и RGB так же показали, что пик 

изменений приходится на 10-12 кадр видео, после 

чего цветовые характеристики стабилизируются.  

Результаты измерений, непоказанные на графи-

ках, приведены в табл.3. В ней рассматриваются сле-

дующие показатели:  

Fr – номер кадра, с которым сравнивается первый 

кадр (0) по различным показателям; 

Hue – изменение тона (модель HSV); 

Sat – изменение насыщенности (модель HSV); 

Brg – изменение яркости (модель HSV); 

Bcor – корреляция по каналу B (сравнение гисто-

грамм); 

Gcor – корреляция по каналу G (сравнение гисто-

грамм); 

Rcor – корреляция по каналу R (сравнение гисто-

грамм); 

Bdif – изменение среднего значения цвета по ка-

налу B; 

Gdif – изменение среднего значения цвета по ка-

налу G; 

Rdif – изменение среднего значения цвета по ка-

налу R; 

Tdif - изменение общего среднего значения цвета; 

Sharp – изменение четкости (метод Лапласа); 

Var – дисперсия Лапласиана (метод Лапласа). 
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Таблица 3 – Результаты анализа 

Table 3 – Analysis results 
fr hue sat brg bcor gcor rcor bdif gdif rdif tdif sharp var 

1 86,30 111,10 126,56 1,00 0,99 0,99 0,48 0,32 0,38 0,68 0,00 498,18 

2 106,52 121,04 131,52 0,99 0,99 0,99 1,30 0,77 0,87 1,74 -0,04 517,40 

3 118,70 129,41 131,09 0,99 0,99 0,99 1,46 0,74 0,71 1,79 -0,10 546,58 

4 124,07 134,39 134,61 0,96 0,97 0,98 2,27 1,19 0,98 2,74 -0,10 546,82 

5 130,60 140,64 135,09 0,94 0,97 0,97 2,55 1,14 0,72 2,89 -0,20 600,08 

6 132,52 142,91 134,84 0,92 0,96 0,97 2,59 0,99 0,53 2,82 -0,21 603,70 

7 137,42 147,74 136,46 0,90 0,96 0,96 3,13 1,18 0,45 3,37 -0,24 619,39 

8 135,49 151,47 138,76 0,87 0,93 0,95 3,92 1,72 0,52 4,31 -0,23 611,82 

9 135,37 154,07 139,63 0,84 0,92 0,92 4,33 1,91 0,35 4,74 -0,28 635,84 

10 134,77 156,17 142,27 0,78 0,88 0,91 5,27 2,61 0,69 5,92 -0,29 643,36 

11 134,48 155,99 143,04 0,76 0,87 0,90 5,67 2,94 0,90 6,45 -0,43 714,50 

12 137,51 159,22 147,06 0,65 0,81 0,88 7,81 4,42 1,74 9,14 -0,39 692,62 

13 136,37 158,59 147,45 0,63 0,79 0,87 8,24 4,87 2,15 9,81 -0,61 802,21 

14 141,18 157,59 147,71 0,60 0,78 0,87 9,01 5,36 2,78 10,85 -0,46 728,63 

15 142,24 157,57 147,04 0,61 0,79 0,87 8,90 5,08 2,39 10,52 -0,48 738,14 

16 144,29 156,87 146,92 0,60 0,79 0,87 8,83 4,89 2,27 10,35 -0,46 729,09 

17 145,24 157,18 147,12 0,58 0,78 0,85 9,03 4,86 2,11 10,47 -0,49 742,51 

18 145,65 157,10 147,32 0,57 0,78 0,85 9,40 5,17 2,37 10,99 -0,49 743,47 

19 143,13 157,67 146,93 0,58 0,78 0,86 9,19 5,02 1,95 10,65 -0,48 736,46 

20 143,36 156,65 147,53 0,55 0,77 0,85 9,80 5,66 2,56 11,60 -0,43 711,63 

21 141,46 156,86 146,32 0,58 0,79 0,86 8,89 4,81 1,63 10,24 -0,45 722,58 

22 147,66 156,44 147,14 0,55 0,78 0,85 9,64 5,02 1,89 11,03 -0,42 708,42 

23 146,71 156,83 146,53 0,58 0,80 0,86 9,47 4,55 1,12 10,57 -0,50 747,66 

24 138,45 146,87 148,51 0,51 0,67 0,74 11,05 7,20 4,18 13,83 -0,42 706,87 

25 142,01 150,09 152,68 0,26 0,43 0,57 16,06 9,86 4,69 19,42 -0,44 715,72 

26 150,27 150,51 151,93 0,27 0,46 0,58 16,15 9,34 4,35 19,16 -0,44 715,52 

27 144,15 152,09 151,95 0,26 0,45 0,58 16,54 9,77 4,15 19,65 -0,37 683,06 

28 154,76 152,43 152,17 0,24 0,46 0,57 17,04 9,42 3,89 19,86 -0,33 662,18 

29 143,08 153,22 152,86 0,21 0,41 0,56 17,86 10,30 3,68 20,94 -0,36 676,05 

30 153,71 152,84 152,82 0,17 0,39 0,53 18,80 10,27 3,66 21,73 -0,36 678,12 

31 146,10 152,88 152,40 0,16 0,37 0,53 19,33 10,87 3,42 22,44 -0,36 676,95 

32 152,21 152,42 151,53 0,14 0,36 0,52 19,52 10,43 3,04 22,34 -0,36 679,15 

33 146,99 152,80 151,40 0,15 0,36 0,53 19,77 10,62 2,55 22,58 -0,39 690,04 

34 157,39 152,62 151,94 0,10 0,32 0,48 21,12 10,95 3,15 24,00 -0,35 673,14 

35 150,58 152,96 151,42 0,10 0,33 0,50 21,45 11,49 3,06 24,52 -0,44 717,48 

36 161,08 153,71 151,05 0,06 0,31 0,48 22,78 11,77 3,23 25,84 -0,39 694,33 

37 153,38 153,56 150,53 0,06 0,31 0,50 23,27 12,46 3,21 26,59 -0,51 751,31 

38 161,52 153,77 150,31 0,04 0,30 0,49 24,19 12,75 3,84 27,61 -0,42 706,24 

39 155,64 153,22 150,22 0,03 0,27 0,46 24,51 13,44 4,26 28,28 -0,42 707,81 

40 165,51 153,24 150,70 0,01 0,26 0,43 25,51 13,69 4,89 29,36 -0,44 715,20 

41 158,68 152,68 150,87 0,00 0,23 0,42 26,04 14,54 5,32 30,30 -0,46 725,68 

42 165,88 152,24 150,60 -0,01 0,23 0,40 26,77 14,58 5,67 31,01 -0,44 717,70 

43 156,38 152,56 150,41 -0,02 0,19 0,38 27,13 15,33 5,82 31,71 -0,45 723,00 

44 164,72 152,40 150,10 -0,03 0,19 0,38 28,12 15,72 6,57 32,88 -0,45 724,75 

45 155,99 152,52 149,77 -0,03 0,16 0,38 28,73 16,68 6,90 33,93 -0,43 714,00 

46 165,97 152,80 149,97 -0,04 0,15 0,37 30,08 17,30 7,96 35,61 -0,47 731,31 

47 159,39 153,20 150,02 -0,05 0,13 0,37 30,87 18,25 8,25 36,80 -0,43 712,56 

48 173,21 153,77 149,69 -0,05 0,14 0,36 31,74 18,18 8,67 37,60 -0,44 714,90 

49 155,02 151,26 149,84 -0,07 0,02 0,29 32,88 20,63 10,41 40,19 -0,49 744,71 
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На основе проведенного анализа был сделан вы-

вод, что требуется проводить коррекцию как цвето-

вых характеристик по отдельности, так и сгенериро-

ванного кадра в целом начиная с 10-13 кадра видео. 

Заключение 
 

Таким образом, генерация видео является пер-

спективным и быстро развивающимся направлением, 

которое находит применение в различных областях, 

от креативной индустрии до автономных транспорт-

ных средств. Изучение моделей генерации видео, их 

возможностей и ограничений способствует как усо-

вершенствованию уже существующих методов, так и 

созданию новых. В ходе исследования были изучены 

возможности модели генерации видео Stable Video 

Diffusion, а именно ее версии XT, был разработана 

программа генерации видео на основе исходного 

кадра подстилающей поверхности, проанализирован 

полученный результат, выявлен участок видео – 10-

13 кадр, с которого следует выполнять постобра-

ботку.  

В дальнейшем планируется выявление и коррек-

ция характеристик кадров, требующих постобра-

ботки. Также будут исследованы возможности до-

полнительного контроля генерируемого видео с по-

мощью текстовых запросов, а также способы кон-

троля направления движения видео.  

 

Исследование проведено в рамках Передовой ин-

женерной школы «Комплексная авиационная инже-

нерия» (Соглашение 075-15-2025-129). 
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