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Искусственный технический интеллект рассматривается как конвергентная система человека и искусствен-

ного интеллекта, представляющая собой комплексный инструментарий, объединяющий передовые техноло-

гии сбора, обработки, анализа данных и человеческие когнитивные способности (знания, опыт, интуиция). 

Анализируются ключевые вызовы, стоящие перед современными производствами: повышение эффективно-

сти, оптимизация технологических процессов, обеспечение промышленной безопасности. Показано, как искус-

ственный технический интеллект может способствовать решению этих задач, предоставляя возможности 

для предиктивного обслуживания оборудования. Представлен конкретный пример применения искусственного 

технического интеллекта для идентификации ситуаций разгерметизации магистральных трубопроводов. 

Модульная аналитическая система основана на технологии искусственного интеллекта и глубокого машинно-

го обучения, состоит из пяти различных нейросетевых моделей рекуррентного и сверточного типа. Резуль-

таты испытаний аналитической системы свидетельствуют о высокой эффективности используемых техни-

ческих решений и возможности их применения для оптимизации технологического процесса перекачки жидко-

стей. Ключевыми преимуществами аналитической системы являются способность обучаться на больших 

объемах неструктурированных данных, извлекать сложные закономерности и зависимости, выявлять реле-

вантные признаки для решения поставленной задачи с целью дальнейшего прогнозирования состояния трубо-

провода. В заключении делается вывод о том, что искусственный технический интеллект является критиче-

ски важным инструментом для обеспечения конкурентоспособности и устойчивого развития объектов про-

мышленных производств в условиях цифровой трансформации. Подчеркивается необходимость дальнейших 

исследований и разработок в области искусственного технического интеллекта, а также активного внедре-

ния этих технологий на промышленных предприятиях. 
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Artificial technical intelligence is considered as a convergent system of humans and artificial intelligence, which is a 

comprehensive toolkit that combines advanced technologies for collecting, processing, analyzing data and human cog-

nitive abilities (knowledge, experience, intuition). The key challenges facing modern industries are analyzed: increas-

ing efficiency, optimizing technological processes, ensuring industrial safety. It is shown how artificial technical intel-

ligence can contribute to solving these problems by providing opportunities for predictive equipment maintenance. A 

specific example of the use of artificial technical intelligence for identifying situations of depressurization of main pipe-

lines is presented. The modular analytical system is based on artificial intelligence and deep machine learning technology, 

consists of five different neural network models of recurrent and convolutional types. The results of testing the analytical sys-

tem indicate the high efficiency of the technical solutions used and the possibility of their application to optimize the techno-

logical process of pumping liquids. The key advantages of the analytical system are the ability to learn on large volumes 

of unstructured data, extract complex patterns and dependencies, identify relevant features to solve the task in order to 

further predict the state of the pipeline. In conclusion, it is concluded that artificial technical intelligence is a critical 

tool for ensuring the competitiveness and sustainable development of industrial production facilities in the context of 

digital transformation. The need for further research and development in the field of artificial technical intelligence, as 

well as the active implementation of these technologies in industrial enterprises is emphasized. 

 

Введение 

Теплоэнергоснабжение промышленности, сопря-

женное с транспортировкой, хранением и использова-

нием пара, горячей воды, топливного мазута или газа, 

относится к числу рискованных отраслей [1]. Утечки, 

связанные с неисправностью трубопроводов, приво-

дят к значительным экономическим потерям и нано-

сят ущерб окружающей среде. Мероприятия по 

предотвращению потенциальных угроз, таких как 

пожары [2], включая лесные пожары [3], возникаю-

щие вследствие возгорания утечек энергоносителей, 

взрывы и токсичные выбросы, требуют постоянного 

совершенствования систем безопасности и управле-

ния [4]. 

Развитие компьютерного оборудования, про-

граммного обеспечения и методов математического 

моделирования способствует росту популярности 

систем обнаружения утечек [5], основанных на анали-

зе данных от датчиков давления, температуры и рас-

хода, установленных на трубопроводах. Традицион-

ные методы мониторинга, основанные на визуальном 

контроле и периодических обходах персонала, имеют 

существенные ограничения, связанные с человече-

ским фактором: утомляемость операторов при дли-

тельном наблюдении за показаниями приборов [6], 
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невозможность непрерывного контроля протяженных 

участков трубопроводов и субъективность оценки 

критичности отклонений параметров. 

Для снижения ущерба и потерь от аварий, связан-

ных с утечками, в системе трубопроводов теплоэнер-

гетики устанавливаются датчики и программное 

обеспечение для мониторинга, позволяющие своевре-

менно принимать меры в зависимости от местополо-

жения точки утечки [7] и компенсировать ограниче-

ния, обусловленные утомляемостью человека при 

непрерывном мониторинге технологических парамет-

ров. Таким образом, ключом к предотвращению даль-

нейшего расширения опасности утечки является рас-

чет местоположения точки утечки. 

Анализ методов обнаружения утечек 

Известные в настоящее время утечки в трубопро-

водах могут инициировать зависимые переменные 

сигналы:  

1) волны отрицательного давления, распространя-

ющиеся вдоль трубы [8];  

2) акустические волны, распространяющиеся по 

трубе;  

3) звук утечки (шум утечки в трубе из-за турбу-

лентных струй вблизи отверстия утечки), распростра-

няющийся вдоль трубы и грунта на короткие расстоя-

ния [9].  

Поэтому разработан ряд технологий обнаружения 

утечек посредством выявления сигналов, вызванных 

утечками, в режиме реального времени или квазире-

ального времени.  

Технологию мониторинга утечек в трубопроводах 

можно условно разделить на две категории: аппарат-

ный и программный методы мониторинга.  

Основными разработанными программными мето-

дами мониторинга являются: метод баланса трубо-

провода, метод переходной модели, метод статисти-

ческого анализа, метод волн отрицательного давления 

[10]. Среди них метод волн отрицательного давления 

получил гораздо больше внимания в исследованиях 

по обнаружению утечек в трубопроводах из-за его 

простоты внедрения и обслуживания, низкой стоимо-

сти, приемлемой чувствительности обнаружения и 

точности определения местоположения. 

Современные методы можно разделить на [11]: 

- анализ переходных процессов в жидкости; 

- анализ изменения сигнала.  

Основной принцип методов определения местопо-

ложения утечек, основанных на переходных процес-

сах в жидкости, заключается в решении уравнений 

неразрывности, баланса массы и импульса, а также 

баланса энергии жидкости в трубопроводе. Рассмат-

ривая эквивалентность в устойчивом состоянии утеч-

ки, разработана параметризованная переходная мо-

дель для определения местоположения точки утечки в 

трубопроводе [12]. На основе базового выражения 

переходного потока был также предложен набор из 

двух связанных одномерных гиперболических урав-

нений в частных производных первого порядка для 

описания поведения динамики потока и последующей 

оценки положения точки утечки [13]. Также была 

предложена энергетическая модель трубопровода для 

непрерывного обнаружения, оценки размера и опре-

деления местоположения утечек в трубопроводе [14].  

Методы обработки согласованного поля также ис-

пользовались для определения места утечки с помо-

щью матрицы анализа переходных процессов [15]. 

Для определения местоположения утечки в трубопро-

воде было предложено теоретическое уравнение, поз-

воляющее определить положение точки утечки через 

изменение скорости звука на концах трубопровода 

[16]. Хотя вышеперечисленные методы позволяют 

определить место утечки с использованием преиму-

ществ переходного отклика жидкости, изменение 

сигнала может быть заглушено фоновым шумом 

сложной среды, и тогда соответствующие методы 

могут не сработать. 

Методы, основанные на анализе изменения сигна-

ла, привлекают внимание исследователей из-за не-

большого количества предположений, меньших огра-

ничений и простоты понимания [17]. Если происхо-

дит утечка, такие методы позволяют рассчитать по-

ложение места утечки на основе разницы между 

настоящим и прошлым значениями собранных пере-

менных, таких как данные о давлении и другие пара-

метры трубопровода.  

В работе [18] для решения проблемы определения 

местоположения утечки был предложен метод, осно-

ванный на отрицательной волне давления.  

Для нелинейных нестационарных сигналов, соби-

раемых датчиками, был представлен метод кросс-

корреляции, основанный на оценке временной за-

держки, для уменьшения ошибки определения место-

положения утечки [19]. Используя разницу во време-

ни между двумя волнами, доходящими до насосной 

станции, для расчета места утечки трубопровода при-

менен кросс-спектральный анализ собранных данных 

[20]. Аналогичным образом, была также представлена 

взаимная корреляция для оценки временной задержки 

сигнала источника утечки для определения местопо-

ложения утечки [21].  

В работе [22] было предложено уравнение распро-

странения отрицательной волны давления с использо-

ванием уравнения импульса и уравнения непрерывно-

сти, а затем точка утечки была подтверждена измене-

нием входного давления и изменением выходного 

давления. Для того чтобы напрямую оценить задерж-

ку времени на основе исходных данных давления, 

методы вейвлет-преобразования сначала получают 

грубую оценку разницы во времени на основе коэф-

фициентов аппроксимации для исходных данных дав-

ления в наибольшем масштабе, затем продолжают 

уточнять оценку с использованием коэффициентов в 

меньших и меньших масштабах. Как только масштаб 

становится меньше 0, процесс оценки прекращается. 

Соответствующее значение разницы во времени по-

лучается через максимум модуля вейвлет-

преобразования, и положение точки утечки может 

быть рассчитано.  

В статье [23] рассматривается применение дис-

кретного wavelet-преобразования, в частности вейвле-

тов Добеши, с целью повышения точности и чувстви-

тельности системы обнаружения утечек в маги-

стральном трубопроводном транспорте. Исследование 

открывает перспективы для дальнейшего развития и 
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адаптации представленных методов для передачи 

технологической информации по каналам связи. 

Метод обнаружения утечек, основанный на поро-

говом вейвлет-шумоподавлении и сети глубокого 

обучения [24], обладает мощными возможностями 

извлечения признаков и возможностью выражения 

сложных нелинейных отношений, а также может хо-

рошо различать аномальные состояния между раз-

личными классами и имеет более высокий процент 

правильных ответов по сравнению с методами ма-

шинного обучения.  

Возможно также объединение акустических мето-

дов и машинного обучения [25]. Для проведения 

классификационных экспериментов с помощью алго-

ритмов случайного леса и экстремального градиент-

ного подъема (Xgboost) в качестве основного объекта 

исследования использовали спектр акустических сиг-

налов. Эти алгоритмы имеют высокую точность обна-

ружения, когда трубопровод находится под низким 

давлением, но может оказать большое влияние на ре-

зультаты эксперимента, когда давление резко меняет-

ся. 

В работе [26] представлена модель 2D-сверточной 

нейронной сети и автоэнкодера с длинной кратко-

срочной памятью, который получает сигналы от аксе-

лерометров, установленных на стенке трубопровода. 

Авторы [27] предложили новую сверточную нейрон-

ную архитектуру, которая может автоматически из-

влекать признаки утечек и осуществлять их диагно-

стику.  

Предложена модель сверточной нейронной сети 

для обнаружения утечек в трубопроводах из ПВХ, 

которая использует изображения сигналов вибрации, 

собранных с акселерометров, прикрепленных к по-

верхности трубопровода [28]. Этот подход может 

быть адаптирован для эффективного обнаружения 

утечек в реальных сценариях с минимальным вмеша-

тельством человека. 

Однако из-за большого сходства между сигналом 

насоса и сигналом утечки, по-прежнему остается ак-

туальной проблемой повышение точности традици-

онного метода волн отрицательного давления для мо-

ниторинга утечек в трубопроводах [22]. 

В настоящее время, с развитием теории глубокого 

обучения, результаты исследований показали, что 

алгоритмы глубокого обучения имеют более высокую 

точность [29]. Поэтому актуальна разработка модуль-

ной аналитической системы идентификации ситуаций 

разгерметизации трубопроводов на фактических дан-

ных средств измерений. 

Модульная аналитическая система 

Силами ООО «Астрапроект» (г. Казань) в 2024 го-

ду разработана и испытана модульная аналитическая 

система идентификации ситуаций разгерметизации 

трубопроводов. Система, основанная на технологии 

искусственного интеллекта и глубокого машинного 

обучения, состоит из пяти различных нейросетевых 

моделей рекуррентного и сверточного типа.  

Результаты испытаний модульной аналитической 

системы свидетельствуют о высокой эффективности 

используемых технических решений и возможности 

их применения для оптимизации технологического 

процесса перекачки жидкостей. Ключевыми преиму-

ществами модульной аналитической системы являют-

ся способность обучаться на больших объемах плохо 

структурированных данных, извлекать сложные зако-

номерности и зависимости, выявлять релевантные 

признаки для решения поставленной задачи с целью 

дальнейшего прогнозирования состояния трубопро-

вода. 

Использование существующих аналитических за-

висимостей, таких как формула Дарси-Вейсбаха, не 

дает однозначного прогноза давления в трубопроводе. 

Погрешности формулы Дарси-Вейсбаха и других ана-

литических зависимостей для расчёта давления в тру-

бопроводах обусловлены несколькими ключевыми 

факторами: 

1) Идеализация свойств жидкости и потока. Боль-

шинство аналитических формул, включая формулу 

Дарси-Вейсбаха, выводятся для идеализированных 

условий: стационарного, одномерного, изотермиче-

ского течения ньютоновской жидкости в гладкой тру-

бе круглого сечения. В реальных условиях поток мо-

жет быть нестационарным, турбулентным, с изменя-

ющимися по длине трубы температурой и вязкостью. 

Жидкость может быть неньютоновской, содержать 

примеси, а стенки трубы – иметь шероховатость, от-

личную от предполагаемой. 

2) Неточность определения коэффициента гидрав-

лического трения (λ). Коэффициент λ, входящий в 

формулу Дарси-Вейсбаха, зависит от режима течения 

(числа Рейнольдса) и относительной шероховатости 

трубы. Его определение, особенно для турбулентного 

режима, часто производится по эмпирическим фор-

мулам или диаграммам, которые сами по себе имеют 

погрешность. Кроме того, шероховатость трубы мо-

жет изменяться со временем из-за коррозии, отложе-

ний и т.д. 

3) Влияние местных сопротивлений. Аналитиче-

ские формулы обычно учитывают только потери дав-

ления на трение по длине трубы. Однако в реальных 

трубопроводах присутствуют местные сопротивления 

(задвижки, отводы, тройники, клапаны и т.п.), кото-

рые вносят дополнительный вклад в потери давления. 

Учет местных сопротивлений часто осуществляется с 

помощью коэффициентов местных сопротивлений, 

которые также определяются эмпирически и имеют 

погрешность. 

4) Многофазность потока. Если в трубопроводе 

присутствует многофазный поток (например, га-

зожидкостная смесь), то применение формулы Дарси-

Вейсбаха, предназначенной для однофазного потока, 

может приводить к значительным ошибкам. Для мно-

гофазных потоков требуются более сложные модели, 

учитывающие взаимодействие фаз. 

5) Инструментальные погрешности. При проведе-

нии измерений давления, расхода и других парамет-

ров, необходимых для расчетов, неизбежно возника-

ют инструментальные погрешности, связанные с точ-

ностью средств и методик измерений. 

6) Упрощения в геометрии трубопровода. Реаль-

ные трубопроводы практически не бывают идеально 

прямыми и с постоянным диаметром. Изменение диа-

метра, уклоны, изгибы – всё это усложняет расчеты и 
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вносит дополнительные погрешности, если не ис-

пользуется численное моделирование. 

Погрешность существующих аналитических зави-

симостей для оценки значений давления в трубопро-

воде составляет 3-5 % и может составлять 10-15 % в 

случае проявления неньютоновских свойств жидко-

сти. Кроме того, погрешность измерения расхода со-

ставляет 1-2 % измеряемой величины, что имеет по-

рядок 10-2. Согласно требованиям промышленной 

безопасности допустимым риском является 10-6 ава-

рий/год. То есть построение систем обнаружения уте-

чек должно ориентироваться как минимум на трех 

независимых источниках данных для перемножения 

вероятностей и получения допустимого риска. 

Существующие системы обнаружения утечек 

(СОУ) представлены волновыми и параметрическими, 

они также имеют погрешность, связанную со сред-

ствами измерений давления и расхода. В связи с 

большой протяженностью расстановка датчиков по 

всему трубопроводу технически невозможна. Исполь-

зование протяженных оптических датчиков в комби-

нированных СОУ затруднено тем, что проходящие 

вблизи трубопровода автомобильные и железные до-

роги могут также вызывать возмущения.  

Волновые СОУ имеют очень высокую чувстви-

тельность и ввиду того, что течение жидкости по тру-

бопроводу является процессом во многом стохастиче-

ским, изменение характера течения жидкости может 

вызывать значительное число ложных срабатываний. 

Точность аналитических зависимостей для оценки 

давления в трубопроводах зависит от множества фак-

торов, включая методические погрешности, влияние 

внешних условий и ограничения измерительных тех-

нологий. Для трубопроводных систем к этим состав-

ляющим добавляются погрешности моделей (1-3 %) и 

ошибки монтажа (до 1,5 %). 

Основываясь на том, что погрешность датчиков 

давления составляет 0,1 % от максимально измеряе-

мой величины можно предположить, что существую-

щие параметрические СОУ должны использовать как 

минимум два соседних датчика для исключения по-

грешностей измерения давления и принципиально не 

могут выявить утечки менее 1 мм. Падение давления 

от малой утечки может быть таким, что не вызовет 

падения давления на соседних датчиках. Таким обра-

зом, хотя математическое моделирование позволяет 

создавать СОУ, имеющие достаточную для обнару-

жения малых утечек точность, погрешность средств 

измерений и случайный характер измеряемых вели-

чин не позволяют однозначно идентифицировать 

утечки диаметром менее 1 мм. 

Поэтому в настоящее время всё еще остро стоит 

задача создания интеллектуальных систем обнаруже-

ния утечек трубопроводов, которые будут объединять 

в себе одновременный анализ как минимум трех неза-

висимых источников данных с погрешностью 10-2. 

Также интеллектуальные системы должны сохранять, 

анализировать и накапливать данные в реальном вре-

мени, а также выдавать предупреждения в случае, 

если изменяется плотность вероятности показаний 

датчиков давления в сторону уменьшения. Данные 

интеллектуальные системы должны работать с необ-

работанным сигналом, то есть быть установленными 

в пунктах контроля и управления (ПКУ), и могут быть 

связаны между собой для выявления аномального 

поведения отдельного датчика давления. 

Согласно проведенному анализу рекуррентные и 

сверточные сети показывают положительные резуль-

таты при анализе временных рядов датчиков давле-

ния. 

В созданной ООО «Астрапроект» модульной ана-

литической системе использовали следующий прин-

цип обнаружения утечек трубопровода: 

1) Обучение на экспериментальных данных неза-

висимых нейросетевых моделей для выявления зако-

номерностей. Для прогноза давления применяли ре-

куррентные сети типа LSTM (Long Short-Term 

Memory), которые специально разработаны для обу-

чения последовательностям данных. Добавление в 

скрытые слои данных о высоте и километраже датчи-

ка давления позволило повысить метрики производи-

тельности на 20 % (таблица 1). Для прогноза данных 

расхода использовали сверточные нейросети типа 

CNN (Convolutional Neural Networks), которые рабо-

тают по принципу автоматического извлечения при-

знаков. 

 

Таблица 1 - Метрики производительности моделей 

Table 1 – Model performance metrics 

Параметр* Модель 1 Модель 2 Модель 3 Модель 4 

MSE 0,0000 0,0052 0,0041 0,0005 

RMSE 0,0024 0,0721 - 0,0225 

MAE 0,0018 0,0494 0,0146 0,0181 

R² Score 0,9956 0,7304 0,9981 0,9361 

Correlation 0,9986 0,9921 0,9905 0,9757 
*MSE (Mean Squared Error) - средняя квадратичная ошибка; 

RMSE (Root Mean Squared Error) - квадратный корень из 

средней квадратичной ошибки; MAE (Mean Absolute Error) - 

средняя абсолютная ошибка; R² Score - коэффициент детер-

минации; Correlation - коэффициент корреляции. 

 

2) Показания каждого датчика давления в реаль-

ном времени передаются в формате временных рядов 

в модульную аналитическую систему (МАС) для про-

гноза показаний. 

3) В случае, если предсказанное значение в каком-

либо модуле прогноза давления отличается в мень-

шую сторону от измеренных показателей (падение 

давления на отдельном датчике - «отрицательная 

аномалия давления») и появляется максимум отрица-

тельной аномалии на каком-либо датчике, МАС выда-

ет цветовую индикацию датчика давления. 

4) В случае, если отрицательная аномалия распро-

страняется на соседние два датчика, МАС выдает со-

общение об утечке. Кроме того, если прогнозное зна-

чение расхода отличается от измеренного значения, 

которое можно назвать «отрицательная аномалия рас-

хода», МАС достаточно двух соседних «отрицатель-

ных аномалий давления» для выдачи сообщения об 

утечке. 

5) Вычисление по известному времени распро-

странения падения давления, которое обычно равно 

скорости звука в веществе, конкретного участка тру-

бопровода, на котором возникла утечка. 

Показатели производительности CNN относятся 

только к расходу, поэтому приведены в отдельной 
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таблице 2. Эта архитектура специально разработана 

для извлечения временных паттернов из последова-

тельностей данных с помощью сверточных слоев, а 

затем преобразования этих признаков через полно-

связные слои в конечный прогноз. Данный модуль 

был добавлен в каждую модель, как дополнительная 

подпрограмма для прогнозирования расхода. 

 

Таблица 2 - Метрики производительности модели 

5, основанной на CNN 

Table 2 – Performance metrics of the CNN-based 

Model 5 

Параметр Модель 5 

MSE 86,0303 

RMSE 9,2753 

MAE 5,0284 

R² Score 0,9972 

 

Показатели производительности для предсказания 

потока с использованием CNN указывают на точность 

и эффективность модели 5 в прогнозировании расхода.  

Среднеквадратичная ошибка 86,0303 указывает на 

то, что в среднем квадрат ошибки между предсказан-

ными и фактическими значениями составляет 86 м³/ч. 

Это значение может быть оценено в контексте сред-

него расхода 2700 м³/ч. В данном случае MSE состав-

ляет примерно 3,19 % от среднего расхода, что гово-

рит о том, что модель демонстрирует приемлемую 

точность при предсказании потока. 

Квадратный корень из средней квадратичной 

ошибки 9,2753 м³/ч указывает на то, что в среднем 

предсказания отклоняются от фактических значений 

примерно на 9,28 м³/ч. В контексте среднего значения 

расхода (2700 м³/ч), это отклонение составляет менее 

0,35 %. Модель очень точно предсказывает значения 

потока относительно его среднего уровня. 

Средняя абсолютная ошибка 5,0284 указывает на 

то, что в среднем предсказания отличаются от факти-

ческих значений на 5,03 м³/ч. При среднем расходе 

2700 м³/ч это отклонение составляет менее 0,19 %, что 

также подтверждает высокую точность модели в 

предсказании. 

Значение коэффициента детерминации 0,9972 ука-

зывает на то, что модель объясняет около 99,72 % 

вариации в данных по расходу. Это значение остается 

высоким и свидетельствует о том, что модель эффек-

тивно захватывает основные закономерности, даже с 

учетом среднего значения расхода. 

Низкие значения MSE, RMSE и MAE в сочетании 

с высоким коэффициентом детерминации R² Score 

подтверждают высокую точность и надежность моде-

ли для предсказания расхода. 

Эти результаты подчеркивают эффективность ис-

пользования CNN для прогнозирования расхода в 

условиях динамики жидкостей и подтверждают, что 

модель способна точно оценивать изменения даже 

при наличии значительных средних значений расхода. 

Модель 1 прогнозирования давления в трубопро-

водах (с атрибутами расстояния и высоты) представ-

ляет собой систему, использующую архитектуру 

LSTM - разновидность рекуррентных нейронных се-

тей показала улучшение метрик производительности 

относительно модели 2, которая имеет идентичную 

архитектуру, но не учитывает пространственное по-

ложение датчика на трубопроводе. Модель 1 эффек-

тивна для задач, где учитываются только данные дав-

ления, и показала лучшие результаты среди первых 

трех моделей. 

Модель 2, несмотря на сложную архитектуру с ис-

пользованием LSTM и GRU, показала большую по-

грешность. Это, вероятно, связано с неоднородностью 

данных или особенностями их нормализации.  

Модель 3 основана на нейросети типа Bidirectional 

LSTM и дает большую погрешность относительно 

Модели 1. Показала хорошие результаты, особенно в 

сценариях, когда данные собираются с нескольких 

датчиков давления одновременно. Однако, показатели 

аномалий меньше соответствуют физическому смыс-

лу (наличию насосных станций и резервных ниток). 

Модель 4 основана на Модели 1 с добавлением в 

обучение данных по расходу. Показывает ухудшение 

метрик производительности ввиду разнородности 

данных. Поэтому прогнозирование расхода выделено 

в отдельную Модель 5 по типу свёрточной нейросети 

CNN. 

Таким образом, Модель 1 является наиболее уни-

версальной и точной для применения в реальных 

условиях эксплуатации. 

МАС позволяет сократить число ложных срабаты-

ваний системы обнаружения утечек и обеспечить тре-

буемую точность. Кроме того, по результатам иссле-

дований получены метрики производительности (таб-

лица 1), превышающие по точности имеющиеся ана-

литические зависимости, что говорит о необходимо-

сти развития данного метода. Например, для повыше-

ния точности обнаружения малых утечек может быть 

использована дополнительная нейросетевая модель 

для прогноза энергопотребления насосов. Диссипация 

энергии на утечке, приводящая к росту энергопотреб-

ления, может стать независимым источником данных 

и увеличить точность обнаружения малых утечек. 

Искусственный технический интеллект 

Индустрия 5.0 - новая парадигма промышленного 

развития, ориентированная на сотрудничество чело-

века и интеллектуальных технологий, таких как ис-

кусственный интеллект, киберфизические системы, 

цифровые двойники и робототехника, с акцентом на 

устойчивость, гуманизацию производства и индиви-

дуализацию решений. 

Если Индустрия 4.0 была сосредоточена на полной 

автоматизации, цифровизации и объединении систем 

в «умное» производство, то Индустрия 5.0 делает ак-

цент на симбиоз человека и машины, где технологии 

усиливают творческий, критический и экспертный 

потенциал человека, а не заменяют его. 

В контексте анализа безопасности технологиче-

ских объектов Индустрия 5.0 приводит к переходу от 

статичных и формальных моделей оценки риска к 

динамичным, человеко-ориентированным и адаптив-

ным системам, использующим искусственный интел-

лект, цифровые двойники и когнитивные технологии 

для прогнозирования, предотвращения и управления 

рисками в реальном времени. 
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Системы искусственного интеллекта демонстри-

руют высокую эффективность в анализе и синтезе 

данных, открывая новые возможности для повышения 

безопасности и эффективности. Однако внедрение 

элементов машинного обучения в управление техно-

логическими объектами и производственными про-

цессами предъявляет особые требования: обеспечение 

полного контроля со стороны владельца, гарантиро-

вание установленных уровней надежности и риска, а 

также защита от несанкционированного вмешатель-

ства. Именно эти задачи решает искусственный тех-

нический интеллект (ИТИ), который нацелен на при-

менение ИИ в управлении, при безусловном соблю-

дении вышеупомянутых требований безопасности и 

контроля. Он представляет собой следующий этап 

развития систем управления, где ИИ используется не 

автономно, а как инструмент, усиливающий возмож-

ности человека и повышающий надежность системы в 

целом. 

В ГОСТ Р 71476-2024 система ИИ определяется 

как техническая система, которая порождает такие 

конечные результаты, как контент, прогнозы, реко-

мендации или решения для заданного набора опреде-

ленных человеком целей.  

Системы ИИ не обладают способностью к пони-

манию в человеческом смысле и зависят от человече-

ского участия на этапах проектирования, разработки и 

эксплуатации. Это участие включает в себя принятие 

проектных решений, а также осуществление надзора 

за функционированием системы. Степень и характер 

надзора могут варьироваться в зависимости от кон-

кретного сценария применения.  

Конвергентная система человека и искусственного 

интеллекта представляет собой интегрированную че-

ловеко-машинную систему, в которой человеческие 

когнитивные способности (знания, опыт, интуиция) и 

возможности искусственного интеллекта (анализ дан-

ных, моделирование, прогнозирование) объединяются 

в рамках единого процесса для совместного анализа, 

принятия решений и управления рисками. 

На рисунке 1 представлена предлагаемая функци-

ональная схема ИТИ, в котором используется конвер-

гентная система человека и ИИ. 

 

 
Рис. 1 – Функциональное представление системы 

искусственного технического интеллекта 

Fig. 1 – Functional representation of an artificial tech-

nical intelligence system 

 

Такой тип системы не предполагает замены чело-

века ИИ, а наоборот - строится на взаимодополнении 

и кооперации: ИИ обрабатывает большие объемы 

данных, распознает скрытые закономерности, форми-

рует прогнозы и сценарии; человек интерпретирует 

результаты, верифицирует выводы, учитывает кон-

текст, принимает обоснованные решения. 

Входные данные (input data) - данные, на основе 

которых система ИИ получает в качестве результата 

прогноз или логический вывод. Входные данные - 

отправная точка для работы ИИ, это весь спектр ин-

формации о состоянии оборудования, веществ, про-

цессов и окружающей среды, на основе которых ИИ-

модель может оценить текущие риски и прогнозиро-

вать возможные аварийные ситуации. 

Обучающие данные (training data) - данные, ис-

пользуемые для обучения модели машинного обуче-

ния. Это набор информации, на основе которого мо-

дель машинного обучения учится выявлять законо-

мерности и принимать решения. Примером обучаю-

щих данных могут быть записи параметров техноло-

гического процесса (давление, температура, концен-

трация веществ и т. д.), сопровождающиеся метками о 

том, произошел ли инцидент (например, утечка, 

взрыв, отказ оборудования) или процесс прошел 

штатно. 

Синтетические данные - искусственно сгенериро-

ванные данные, которые имитируют реальные дан-

ные, но создаются с помощью моделирования, симу-

ляций или алгоритмов, а не получаются напрямую из 

реальных наблюдений. Они используются для обуче-

ния и тестирования моделей, особенно в тех случаях, 

когда реальные данные недоступны, неполны или 

чувствительны. Синтетические данные могут исполь-

зоваться для моделирования аварийных сценариев, 

которые редко происходят в реальности, но имеют 

высокую критичность. Это позволяет обучить систе-

мы ИИ предсказывать и предотвращать потенциально 

опасные ситуации. Синтетические данные, получен-

ные на основе HAZOP-анализа, позволяют обучать 

ИИ-системы и модели машинного обучения выявле-

нию и прогнозированию опасных отклонений, даже 

если в реальности они ещё не происходили. Это осо-

бенно важно для объектов повышенной опасности, 

где предотвращение инцидентов критически важно, а 

реальные данные об авариях ограничены. 

Модульная аналитическая система - интегриро-

ванная совокупность взаимосвязанных программных 

и аппаратных модулей, предназначенная для сбора, 

обработки, анализа и визуализации данных с целью 

поддержки принятия решений. По результатам выше-

указанной работы рассматривается возможность ис-

пользования аналогичных решений для промышлен-

ных производств. Отмечено, что модульная аналити-

ческая система технологического процесса способна 

адаптироваться к изменениям объемов производства, 

замене оборудования и катализаторов, что позволит 

оптимизировать качество продукта. Аналитическая 

система может быть встроена как рекомендательная 

система, которая обучается в процессе эксплуатации. 

Цифровой двойник технологического процесса - 

виртуальная модель реального технологического про-

цесса, которая точно отражает его структуру, поведе-

ние и динамику на основе данных с физических объ-

ектов, математических моделей и алгоритмов обра-



Вестник технологического университета. 2025. Т.28, №12 

141 

ботки информации. Цифровой двойник функциониру-

ет в тесной связи с физическим процессом, обеспечи-

вая непрерывный обмен данными в реальном времени 

для мониторинга, анализа, прогнозирования и опти-

мизации работы системы. В контексте анализа без-

опасности цифровой двойник служит инструментом 

для раннего выявления рисков, прогнозирования ава-

рийных ситуаций, оценки эффективности защитных 

мер и повышения надежности принятия решений. 

Семантический вычислитель - интеллектуальная 

система, способная интерпретировать и обрабатывать 

информацию на основе её смысла и контекста с ис-

пользованием формализованных знаний (онтологий, 

семантических правил, логических связей). В области 

анализа безопасности технологического объекта се-

мантический вычислитель применяется для иденти-

фикации и интерпретации рисков, автоматического 

выявления отклонений, контекстного анализа аварий-

ных сценариев и поддержки принятия решений, обес-

печивая более глубокое и обоснованное понимание 

сложных производственных ситуаций. 

Семантические вычисления направлены на сопо-

ставление семантики обрабатываемого контента с 

человеческими намерениями. В ходе семантических 

вычислений создаются представления для описания 

информации, которые затем используются для извле-

чения и создания контента, а также управления и ма-

нипулирования им. Семантическое описание контента 

позволяет уменьшить неопределенность в когнитив-

ных процессах и в логических рассуждениях на осно-

ве информации. Это, в свою очередь, помогает обес-

печить обогащение информации, устранение кон-

фликтов, реферирование и сравнение. Таким образом, 

семантические вычисления - подход, который сочета-

ет в себе использование априорной информации и 

обучения. 

Эксперт - специалист, обладающий глубокими 

теоретическими знаниями, практическим опытом, 

интуицией и компетенциями в области промышлен-

ной безопасности, позволяющими ему обоснованно 

анализировать сложные ситуации, формулировать 

суждения, давать заключения и принимать решения в 

условиях неопределённости.  

Обработка и обучение производятся ИИ, который 

используют для порождения прогнозов, а эти прогно-

зы, в свою очередь, используются для того, чтобы с 

помощью человека последовательно выдавать реко-

мендации, решения и выполнять действия. 

Выход - итоговая информация, формируемая в ре-

зультате совместной аналитической деятельности 

человека и системы искусственного интеллекта, 

включающая прогнозы, оценки рисков, диагностиче-

ские заключения, рекомендации или управленческие 

решения. Такой выход является результатом интегра-

ции вычислительных возможностей ИИ (обработки 

данных, моделирования, прогнозирования) и эксперт-

ных знаний человека (интерпретации, верификации, 

контекстуализации), что позволяет учитывать как 

формализованные, так и неформализуемые аспекты 

анализа риска. 

Пример применения предлагаемого ИТИ на объек-

те. ИИ-модель: 

- по данным датчиков системы АСУТП анализиру-

ет данные (давление, температура, расход и т.д.); 

- формирует рекомендации по корректировке ве-

дения технологического процесса; 

- обнаруживает аномалию (рост давления выше 

нормы, отклонения по температурному режиму, сни-

жения выхода продукта или ухудшение качества); 

- формирует прогноз развития течения технологи-

ческого процесса и предлагает сценарии реагирова-

ния. 

Оператор (эксперт) оценивает ситуацию: 

- сравнивает с предыдущими (или регламентными) 

данными по технологическому процессу; 

- учитывает контекст (например, плановое техни-

ческое обслуживание, переход с одного вида сырья на 

другое, изменение продуктовой линейки, смена ре-

жима работы установки); 

- принимает решение (скорректировать технологи-

ческие параметры, определить время перехода на но-

вый технологический режим, остановить установку, 

переключиться на резервный контур, провести осмотр 

и т.д.). 

Результат - совместное решение, сочетающее точ-

ность ИИ и опыт человека, снижающее вероятность 

аварии. 

Приведенные выше функции охватывают основ-

ные особенности ИТИ и соответствуют показателям 

классификации ИИ по ГОСТ Р 59277-2020. Таким 

образом, предлагаемый ИТИ - специализированный 

узконаправленный ИИ, основанный на глубоком обу-

чении по эксплуатационным и синтетическим много-

мерным данным, является экспертно-аналитической 

системой принятия решений с функциями многоуров-

невого аудита, интегрируемой в системы контроля и 

управления технологическими процессами и про-

мышленной безопасностью, адаптивной для различ-

ных технических решений в промышленности.  

Развитие искусственного технического интеллекта 

открывает перед промышленностью принципиально 

новые возможности для решения целого комплекса 

важнейших задач. Одно из ключевых направлений – 

это предиктивная аналитика. Системы ТИ, непрерыв-

но анализируя данные с многочисленных датчиков, 

способны не просто фиксировать текущее состояние 

оборудования, но и выявлять скрытые аномалии, 

предсказывая потенциальные отказы задолго до их 

фактического проявления. Такой проактивный подход 

позволяет перейти от реактивного обслуживания к 

превентивному, своевременно проводя необходимые 

ремонтные работы, избегая тем самым дорогостоящих 

простоев и, что самое главное, предотвращая аварий-

ные ситуации, связанные с утечками опасных ве-

ществ, взрывами и выбросами. 

Помимо повышения безопасности, искусственный 

технический интеллект обеспечивает значительную 

оптимизацию самих технологических процессов. Бла-

годаря возможностям ИИ, параметры процессов, та-

кие как температура, давление и состав сырья, могут 

регулироваться в режиме реального времени с учетом 

множества переменных факторов. Это позволяет до-

стигать максимальной эффективности производства: 

снижать потребление энергии, минимизировать коли-

чество отходов, повышать качество конечной продук-
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ции и, в конечном итоге, увеличивать общую при-

быльность предприятия. 

Скорейшее внедрение в систему автоматики ин-

теллектуальных систем является наиболее важной 

задачей, так как создание цифровой модели позволит 

накапливать опыт эксплуатации, чтобы наиболее точ-

но выявить аномальное поведение на данном техно-

логическом режиме, что возможно только в случае 

наличия достаточного объема статистических данных. 

Кроме того, эта система позволит давать рекоменда-

ции по устранению выявленных инцидентов и откло-

нений технологического процесса. Управляющие сиг-

налы в систему автоматики при этом должен подавать 

диспетчер, так как сам принцип машинного обучения 

содержит в себе вероятностный характер. Модульный 

принцип организации структуры позволяет осуществ-

лять внедрение системы локально на ответственных 

участках, с последующим наращиванием в цельную 

систему любого технологического процесса. 

Внедрение искусственного технического интел-

лекта – это не просто следование технологическим 

трендам, а стратегическая необходимость, обуслов-

ленная сложностью и опасностью производственных 

процессов, а также растущими требованиями к эф-

фективности, безопасности и экологичности. ТИ вы-

ступает в роли ключевого инструмента, обеспечива-

ющего устойчивое развитие и конкурентоспособность 

предприятий в современных условиях. 

Заключение 

Представлена модульная аналитическая система 

идентификации ситуаций разгерметизации трубопро-

водов, основанная на технологиях глубокого машин-

ного обучения и объединяющая пять нейросетевых 

моделей рекуррентного и сверточного типа. Приме-

нение архитектур LSTM с учетом пространственных 

характеристик датчиков позволило повысить метрики 

производительности прогнозирования давления на 20 %, 

а использование сверточных нейронных сетей для про-

гнозирования расхода обеспечило коэффициент детер-

минации 0,9972, что подтверждает возможность преодо-

ления ограничений традиционных аналитических зави-

симостей с погрешностью 3-15 %. Введена концепция 

искусственного технического интеллекта как специали-

зированного узконаправленного ИИ, интегрируемого в 

системы контроля и управления с безусловным соблю-

дением требований промышленной безопасности, реа-

лизующего конвергентную систему человека и искус-

ственного интеллекта в парадигме Индустрии 5.0. 

Модульный принцип организации системы обеспечи-

вает поэтапное внедрение и масштабирование, спо-

собность к обучению в процессе эксплуатации гаран-

тирует непрерывное повышение точности обнаруже-

ния аномалий, а применимость разработанных реше-

ний для широкого спектра технологических процес-

сов промышленности открывает перспективы созда-

ния адаптивных экспертно-аналитических систем 

принятия решений с интеграцией цифровых двойни-

ков и семантических вычислителей для обеспечения 

безопасности, эффективности и конкурентоспособно-

сти промышленных предприятий. 
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