А. М. Губайдуллина, Т. З. Лыгина, А. Н. Халитова, А. А. Панина

ИССЛЕДОВАНИЕ ПРОЦЕССОВ ГИДРАТАЦИИ И ТВЕРДЕНИЯ ПОРТЛАНДЦЕМЕНТА МЕТОДАМИ ТЕРМИЧЕСКОГО АНАЛИЗА

Ключевые слова: цемент, добавки, силикат кальция, волластонит, каркасный алюмосиликат, цеолитсодержащая карбонатная порода, слоистый силикат, органобентонит, термический анализ.

Проведены исследования термического поведения 11 образцов цементного камня. Выявлена высокая информативность термических методов при исследовании процессов гидратации и твердения портландиемента методами термического анализа.

Keywords: cement, the additive, calcium silicate, wollastonite, frame aluminosilicate, zeolite-containing carbonate rock, layered silicate, organic bentonite, thermal analysis.

Researches of thermal behaviour of 11 samples of a cement stone are carried out. The high information content of thermal methods is revealed in studying the hydration and hardening of Portland cement by thermal analysis.

Введение

Цемент представляет собой гидравлический вяжущий материал, который после с водой И предварительного затвердевания на воздухе продолжает сохранять и нарашивать прочность. При твердении портландцемента происходит ряд весьма сложных химических и физических явлений. Типичными реакциями для твердения портландцемента и других вяжущих веществ являются реакции гидратации, протекающие с присоединением воды. В конечном виде цементный камень представляет собой неоднородную систему конгломерат кристаллических и коллоидных гидратных образований [1]. Для повышения эффективности производства и направленного регулирования свойств цементов на основе портландцементного или глиноземистого клинкера, допускается введение в них добавок в виде органических и неорганических, природных и искусственных материалов или их смесей [2].

Для идентификации фазового и элементного состава цементного камня традиционно используются химический и рентгенофазовый анализы. В ряде случаев наличие в цементе аморфных гидратных образований не позволяет достоверно оценить их содержание рентгенографическим и химическим методами.

В ранее проведенных нами исследованиях была показана возможность улучшения качества портландцемента путем введения добавки волластонита [3].

В данной работе рассматриваются результаты серии исследований по выявлению возможностей термических методов при изучении процессов гидратации и твердения портландцементов различного состава.

Экспериментальная часть

Целью работы являлось исследование процессов гидратации и твердения портландцементов различного минерального состава и времени гидратации.

Объектами исследований являлись образцы портландцемента марки ПЦ400 и его разности с различными минеральными добавками. В качестве минеральных добавок были использованы природный безводный кальциевый силикат (волластонит), каркасный водосодержащий алюмосиликат (цеолитсодержащая карбонатная порода), модифицированный природный алюмосиликат, содержащий межслоевом В пространстве органическую компоненту (ОБ органобентонит).

Методами термического анализа (ТГ-ДТГ) были изучены 11 образцов цементного камня с добавками к нему силикатов и алюмосиликатов от 5 до 20% масс. Кроме того, сами добавки отличались морфологии частиц (волокнистые пластинчатые частицы) и их размерам. волластонита характерны волокнистые частицы с длиной 30÷60 мкм (КВ - коротковолокнистый) и 2÷4 длинноволокнистый). (ДВ карбонатной цеолитсодержащей породы характерны пластинчатые частицы с размерами более 50 % фракций от 0,005 мм и менее (МД мелкодисперсный) и размерами от 0,005 и более (КД - крупнодисперсный).

Исследование термического поведения образцов проводилось в динамических неизотермических условиях на синхронном термоанализаторе STA 409 PC Luxx производства Netzsch. Исследуемые образцы нагревали от 30 °C до 1000 °C со скоростью 10 К/мин в платиновых тиглях, закрытых проницаемыми крышками. Анализ проводился в воздушной среде.

Результаты и их обсуждение

На термических кривых исходного марочного портландцемента без добавок (ТГ-ДТГ) регистрируются три эндотермических эффекта. Первый эффект в интервале температур 30 — 375 °C относится к процессу дегидратации гидросульфоалюминатов кальция. Второй эффект в интервале 375-510 °C регистрирует наличие портландита, третий интервал превращений 510-735 °C может быть отнесен к эндотермическому

эффекту диссоциации кальцита, образующегося в процессе гидратации цемента.

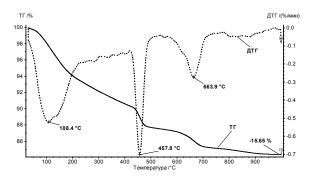


Рис. 1 – Термическое поведение портландцемента марки ПЦ400 (гидратация – 28 суток)

Ниже мы рассматриваем термическое поведение портландцементов с выбранными добавками. В каждом случае степень гидратации модифицированных цементов сопоставляется с конфигурацией кривых и термоаналитическими характеристиками для исходного цемента.

Термическое поведение портландцементов с добавками силиката кальция (волластонита)

На рис. 2 приведены термоаналитические ТГ-ДТГ кривые образцов исходного цементного камня возраста 28 суток и цемента с добавками силиката кальция. Как видно из рисунка введение добавки коротковолокнистого силиката кальция не приводит к заметным изменениям конфигурации кривой. Однако, для образца цемента с добавкой длинноволокнистого силиката кальция в первом интервале по ТГ и ДТГ – кривым наблюдается достаточно заметное различие по интенсивности эндотермических эффектов (табл. 1).

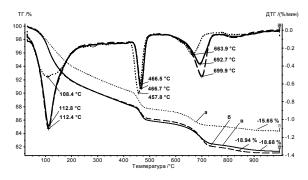


Рис. 2 — Термическое поведение исходного портландцемента и портландцемента с добавками силиката кальция в возрасте 28 суток. Содержание добавки — 5% (а - исходный ПЦ, б — ПЦ+КВ, в — ПЦ+ДВ)

Сужение интервала первого термического эффекта свидетельствует об образовании гидроалюмината кальция - эттрингита. Заметное увеличение потери массы свидетельствует о возрастании содержания эттрингита и портландита.

Смещение максимума эндотермического эффекта в высокотемпературной области до

699,9°C для цемента с добавкой длинноволокнистого силиката кальция свидетельствует об образовании кальцита с более высокой степенью кристалличности.

Таблица 1 – Термические характеристики образцов портландцемента

Тип	Состав, %		Потеря массы (%масс) в интервале температур, °C		
добав- ки	ПЦ 400	доба в- ка	30-375	375-510	510- 735
-	100	-	7,74	1,77	2,19
КВ	95	5	8,69	2,73	2,40
ДВ	95	5	11,02	2,86	4,03
КВ	85	15	10,11	3,36	3,21
ДВ	85	15	11,10	3,06	3,37
МД	90	10	12,73	3,22	3,24
КД	90	10	8,56	3,47	3,45
МД	80	20	12,55	3,14	4,84
КД	80	20	11,00	3,19	4,34
ОБ	99	1	12,51	3,06	2,97
ОБ	97	3	13,08	3,29	2,8

МД-мелкодисперсный ЦСКП, КД- крупнодисперсный ЦСКП, КВ – коротковолокнистый волластонит, ДВ – длинноволокнистый волластонит, ОБ – органобентонит.

Термическое поведение портландцементов с добавками каркасного водосодержащего алюмосиликата (цеолитсодержащей кремнистой породы)

Для образцов цемента с данной добавкой сохранении всех характерных эндотермических эффектов, наблюдается несколько иная, специфическая конфигурация кривых (рис.3). лля образца цемента лобавкой Так крупнодисперсного каркасного сипиката наблюдается уширение и раздвоение первого эндотермического эффекта, а для образца с добавкой мелкодисперсного силиката фиксируется сужение кривой и возрастание интенсивности водоотдачи, что свидетельствует о наличии активных структурных и фазовых превращений при переходе тиксотропно-кристаллического состояния в коллоидно-кристаллическое.

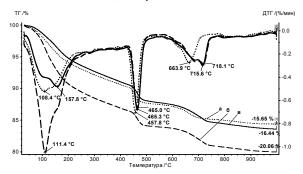


Рис. 3 — Термоаналитические кривые портландцементов различного состава портландцемента с добавками каркасного водосодержащего алюмосиликата в возрасте 28 суток, содержание — 10% (а — исходный ПЦ, б — ПЦ+МД, в — ПЦ+КД)

Термическое поведение портландцементов с добавками слоистого силиката, содержащего органическую компоненту

В экспериментах этой серии использовался одна разновидность добавки, варьировалось только его содержание. На рисунке 4 приведен сопоставительный анализ кривых дифференциального термогравиметрического анализа исходного цемента и цемента с добавками 1 и 3 % слоистого силиката, содержащего органическую компоненту, в возрасте 28 суток.

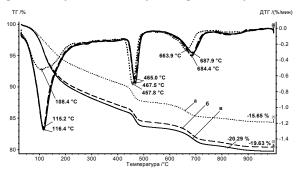


Рис. 4 - Термическое поведение портландцементов с добавками слоистого силиката, содержащего органическую компоненту (а – исходный ПЦ, б – ПЦ+ОБ 1%, в – ПЦ+ОБ 3%)

Конфигурация ТГ-ДТГ кривых образцов цементного камня с добавкой 1 и 3 % слоистого силиката с органической компонентой в межслоевом пространстве характеризуется схожей конфигурацией и заметно отличается конфигурации кривой для исходного цементного камня. Уменьшение степени гидратации цементов добавками, содержащими органическую компоненту, объясняется увеличением гидрофобности таких систем.

Кроме качественной и количественной оценки термического поведения гидратированных портландцементов нами проведена оценка

содержания портландита, образующегося при затворении цемента.

Наличие явно выраженного эндотермического эффекта в интервале 375-510 °C, для процесса дегидроксилизации характерного гидроксида кальция (портландита) позволяет однозначно оценить его количественное В содержание. интервале термического превращения портландита других термоактивных фаз не регистрируется, поэтому вся потеря массы в этом интервале может быть отнесена только к содержанию этого минерала. В дальнейших исследованиях всего экспериментального материала был проведен анализ содержаний портландцемента.

В исходном портландцементе содержание портландита составляет 13,70%. В первой группе портландцемента с добавками силиката кальция содержание портландита варьируется от 11,23 – 13,83 %, во второй группе – с добавками каркасного водосодержащего алюмосиликата – от 12,92 до 14,28 %. в третьей группе – с добавками слоистого силиката, содержащего органическую компоненту – от 12,59 до 13,54 %.

Таким образом, проведенные нами исследования термического поведения портландцементных камней показали высокую информативность термических методов анализа (ТГ-ДТГ) при исследовании процессов гидратации и твердения портландцемента.

Литература

- 1 Сулименко Л.М. Технология минеральных вяжущих материалов и изделий на их основе: учебник для вузов / Л.М.Сулименко. М.:Высшая школа, 2000. 303 с.: ил.
- 2 Волженский А.В. Минеральные вяжущие вещества: (технология и свойста). Учебник для вузов / А.В.Волженский, Ю.С.Буров, В.С.Колокольников. 3-е изд.,перераб.и доп. М.: Стройиздат, 1986 464с.: ил.
- 3 А.М.Губайдуллина, А.А. Панина, А.В. Корнилов, Вестник Казанского университета,17,41-45 (2011).

[©] **А. М. Губайдуллина** – канд. техн. наук, зав. отдела аналитических испытаний ФГУП ЦНИИгеолнеруд, доц. каф. ТНВиМ КНИТУ, alfgub@mail.ru; **Т. 3.** Лыгина – д-р геол.-мин. наук, зам. ди. по науке ФГУП ЦНИИгеолнеруд, проф. каф. ТНВиМ КНИТУ; lygina@ geolnerud.net; **А. А. Излитова** – инженер ФГУП ЦНИИгеолнеруд, ahalitova@mail.ru; **А. А. Панина** – мл. науч. сотр. ФГУП ЦНИИгеолнеруд, асп. каф. ТНВиМ КНИТУ, panina273@yandex.ru.