В. М. Мисин, С. С. Никулин, К. М. Дюмаев

КОАГУЛЯЦИЯ ПРОМЫШЛЕННЫХ ЭМУЛЬСИОННЫХ КАУЧУКОВ В РОССИИ ПОЛИМЕРНЫМИ ЧЕТВЕРТИЧНЫМИ АММОНИЙНЫМИ СОЛЯМИ. ХРОНОЛОГИЯ РАЗВИТИЯ РАБОТЫ

Ключевые слова: синтетические эмульсионные каучуки, латекс, флокулянты, полимерные четвертичные соли аммония, экология, физико-механические свойства.

В обзоре рассмотрены особенности процессов выделения синтетических каучуков из промышленных эмульсий с применением флокулянтов - полимерных четвертичных солей аммония. В качестве флокулянтов изучены гомо- и сополимеры N,N-диметил-N,N-диаллиламмоний хлорида (с SO₂, малеиновой кислотой, акриламидом), а также поли-(N,N-диметил-2-оксипропиленаммоний) хлорид. Были выделены и исследованы каучуки и соответствующие вулканизаты различных марок: бутадиен-стирольные, бутадиен-(а-метил)стирольные, бутадиеннитрильный и бутадиеновый. Продемонстрированы положительные экологические аспекты разработанных процессов. Показано, что резиновые смеси и вулканизаты на основе выделенных каучуков обладают хорошими физико-механическими свойствами, удовлетворяющими нормативным документам. Сообщено о выпуске промышленной партии каучука в 1992 г. на Воронежском заводе СК. Рассмотрена хронология развития работ в России. Показано, что внедрение таких процессов в настоящее время на заводах синтетических каучуков базируется на результатах ранее проведенных работ, опубликованных в многочисленных статьях и патентах.

Key words: synthetic emulsion rubbers, latex, flocculants, polymeric quaternary ammonium salts, ecology, physical and mechanical properties.

The review deals with features of the processes of allocating of synthetic rubber industrial emulsions with application flocculating agents - polymeric quaternary ammonium salts as flocculants. Homo-and copolymers of N, N-dimethyl-N, N-diallilammony chloride (from SO2, maleic acid, acrylamide) and poly-(N, N-dimethyl-2 oksipropilenammony) chloride are studied. Have been isolated and studied different brands vulcanized rubber: butadiene-styrene, styrene-(amethyl) styrene, styrene-acrylonitrile and butadiene. Positive environmental aspects of the developed processes are demonstrated. It is shown that rubber compounds based on allocated rubbers have good physical and mechanical properties that meet regulations. Announced the release of industrial batch of rubber in 1992 in Voronezh Synthetic Rubber Plant. Considered chronology of works in Russia. Results of previous studies published in numerous papers and patents demonstrate that implement of such processes in modern synthetic rubbers plants based on the preceding work.

Введение

Общий объем производства синтетических эмульсионных каучуков только в России составляет более 315 тыс. т в год, в мире – более 4000 тыс. т в год. При этом доля эмульсионных каучуков составляет примерно 30% от общего производства каучуков, как в России, так и в мире [1, 2]. Способами эмульсионной полимеризации получают самые разнообразные марки различных видов каучуков. Производство эмульсионных каучуков в России сосредоточено на крупных заводах в нескольких городах: Воронеж, Красноярск, Омск, Стерлитамак, Тольятти. Одной из ключевых стадий получения эмульсионных СК является коагуляция эмульсий каучуков с получением крошки каучуков. Вплоть до последних лет коагуляцию эмульсий проводили с традиционным применением солей металлов - NaCl, CaCl₂, бишофита.

После коагуляции применяемые коагулянты удаляются из полимеризационной системы вместе с серумом и промывными сточными водами. Поскольку для выделения 1 т эмульсионного каучука необходимо использование до 170 кг NaCl и до 20 кг бишофита, то для обеспечения всего годового производства эмульсионных каучуков в России требуется до 54 000 т NaCl и до 7 300 т солей двухвалентных металлов. В дальнейшем сбрасываемые со сточными водами на очистные сооружения коагулянты не улавливается заводскими очистными со-

оружениями и далее вместе с очищенными в штатном режиме стоками попадают в реки. Таким образом, вышеуказанные объемы производств, безусловно, приводят к возникновению большого количества отходов в составе промышленных сточных вод. Лишь в последние годы на заводах стали отрабатывать методики выделения эмульсионных каучуков с помощью полимерных флокулянтов, имеющих различное строение.

Настоящая статья посвящена рассмотрению истории развития работ по применению в различных целях полимерных четвертичных аммонийных солей (ЧАС), являющихся частным случаем флокулянтов. В основном речь пойдет о гомо- и сополимерах N,N-диметил-N,N-диаллиламмоний хлорида. Кроме того будут рассмотрены результаты исследования процесса выделения эмульсионного каучука с помощью поли-(N,N-диметил-2-оксипропиленаммоний) хлорида.

Основная часть

Поли-N,N-диметил-N, N-диаллиламмоний хлорид – добавка к коагулирующим системам

Еще в конце 80-х годов прошлого столетия было обнаружено, что не токсичный поли-N,N-диметил-N, N-диаллиламмоний хлорид (ПДМДА-АХ) обладает более мощной дезинфицирующей способностью в отношении синегнойных бактерий по сравнению с дорогим швейцарским препаратом «роккал». В дальнейшем было обнаружено его воз-

действие на другие патогенные организмы: грамотрицательные и грамположительные бактерии (золотистый стафилококк, пневмококк, стрептококк, кишечную палочку, энтерококк, фекальный кокк, протей обыкновенный, синегнойные бактерии и проч.), грибки (кандидозы и дерматофитии), вирусы. На основе проведенных исследований были разработаны дезинфектанты, что было зафиксировано в заявках 1981-82 гг. на авторские свидетельства [3, 4]. Позже было установлено, что ПДМДААХ может быть использован как средство защиты растений в качестве фунгицида и бактерицида [5]. В это время полимер под торговой маркой ВПК-402 в виде водного концентрата (содержание основного вещества до 45%) выпускался на пилотной установка опытного цеха завода «Каустик» в г. Стерлитамак. Структурная формула полимера

Биоцидные свойства ПДМДААХ позволили рекомендовать его в качестве добавки-биоцида для защиты от биоразрушения коагулирующих составов на основе белковых коагулянтов, в то время достаточно широко исследуемых, в частности, мездрового клея, белков растительного происхождения, белкозина (гидролизата коллагена). Действительно ПДМДААХ проявил себя как эффективный биоцид, предотвращающий разложение белка [6-10]. Введение всего 0,1% ПДМДААХ на массу белка позволило полностью устранить появление неприятного запаха и обеспечить длительную сохранность водного раствора белков без разложения даже в летний период.

Было обнаружено, что добавка полимера к коагулирующей системе в количестве 0.5-1.5 кг/т выделяемого каучука сразу же позволила уменьшить количество вводимого традиционного коагулянта NaCl с сотен кг до 20-50 кг/т каучука. Роль ПДМДААХ в составе двухкомпонентной смеси являлась определяющей. Поэтому увеличение добавляемого ПДМДААХ до 3-4 кг/т позволило полностью исключить NaCl из состава коагулянта [11-15]. При этом обеспечивались необходимые технологические параметры: полнота коагуляции, прозрачность серума и оптимальные размеры крошки каучука.

К этому времени было налажено полномасштабное производство ВПК-402 в Стерлитамаке, что давало основание планировать работы по промышленному выпуску различных эмульсионных каучуков с применением ВПК-402.

Базируясь на полученных результатах в период 1993-94 гг. была предпринята успешная попытка многотоннажного последовательного выпуска (327 т) маслонаполненного каучука марки СКС-30 АРКМ-15 на АО «Воронежсинтезкаучук», что подтверждено соответствующими актами. Об этом факте неоднократно сообщалось в публикациях [14-16], в которых, однако, приведена заниженная цифра объема выпуска СК.

Поли-N,N-диметил-N, N-диаллиламмоний хлорид — эффективный флокулянт

Обнаружение высокой эффективности работы ПДМДААХ в качестве флокулянта позволило системно подойти к изучению процесса выделения СК из промышленных эмульсий. В качестве объектов изучения были исследованы эмульсии различных промышленных каучуков, из которых в дальнейшем были получены и исследованы каучуки и соответствующие вулканизаты различных марок: СКС-30 АРК; СКС-30 АРКП; СКС-30 АРКПН; СКС-30 АКО; СКМС-30 АРКП; СКМС-30 АРКМ-15; СКН-26 СМ; ЭПБ.

Безусловно, наибольший объем исследований был проведен на примере распространенных бутадиен-стирольных каучуков СКС-30 и СКМС-30. Было изучено влияние различных факторов [14, 17-19] в широких интервалах на полноту выделения каучука из латекса:

- расходной нормы ВПК-402 (0,4-8,0 кг/т каучука);
- рабочей концентрации ВПК-402 (2,40-44,0%);
- молекулярной массы ВПК-402 (MM = 15000-49000);
- температуры проведения процесса (20- 90^{0} C);
- расход подкисляющего агента (H_2SO_4) (0,5-16 кг/т каучука).

На примере бутадиен-стирольных латексов СКС-30 АРК, СКС-30 АРКПН было показано, что масса выделяющегося коагулюма возрастала с увеличением добавки ВПК-402 в латекс. Полнота коагуляции достигалась при норме ≈ 4 кг/т каучука. При этом расходная норма катионного полиэлектролита, требуемая для достижения полной коагуляции латекса СКС-30 АРК, зависела от температуры: оптимальная температура коагуляции 60°C. Применение более высоких температур не приводило к существенному увеличению выхода коагулюма. Концентрация исходного водного раствора катионного полиэлектролита не оказывала существенного влияния на его расход, необходимый для полного извлечения каучука из латекса. Однако промышленный концентрат ВПК-402 было трудно дозировать из-за его высокой вязкости, поэтому предложена оптимальная концентрация рабочего раствора ВПК-402 - 15-20%. Расход H_2SO_4 составлял 8-12 кг/т каучука (против 12-18 кг при коагуляции NaCl) до величины рН 0,2-1,5 [14, 17-19].

При исследовании влияния величины молекулярной массы ПДМДААХ на процесс коагуляции [20-22] было обнаружено, что с увеличением [η] флокулянта происходит увеличение объема коагулированных частиц. Повышение среднего размера агрегатов, свидетельствует о том, что и в условиях, благоприятствующих проявлению нейтрализационного механизма флокуляции, определенное влияние сохраняет и механизм мостикообразования. С повышением молекулярной массы по-видимому, возрастает размер "петель" и "хвостов" адсорбированных макромолекул, которые обращены в водную фазу и способствуют адсорбционному захвату со-

седних частиц. Величина молекулярной массы полиэлектролита не оказывала влияния на расходную норму ВПК-402, требуемую для выделения 1 т каучука из латекса. В то же время отмечали снижение продолжительности выдержки во времени коагулируемой системы для достижения полноты коагуляции.

Химический анализ образцов каучуков, выделенных из латекса СКС-30 АРКП с помощью различных фракций ВПК-402, показал полную идентичность образцов по следующим величинам: содержание свободных и связанных карбоновых кислот, содержание золы и величина потери массы при сушке (табл. 1) [20].

Исследования показали, что все полученные образцы различных марок каучуков полностью удовлетворяли требованиям ГОСТ и ТУ [9, 14, 18]. В табл. 2 приведены свойства каучука СКС-30 АРК,

выделенного с помощью коагулянта ВПК-402, а также резиновых смесей и вулканизатов на его основе [17]. Химические составы каучуков, выделенных из латексов водными растворами ВПК-402, мало отличались от контрольных образцов каучука, выделенного из латекса с применением хлорида натрия. Однако необходимо отметить, что образцах коагулюма, практически во всех выделенного из латекса с помощью ВПК-402, содержание мыл органических кислот было минимальным (отсутствие или следы). В то же время в образцах коагулюма, выделенного из латекса с помощью NaCl, этот показатель изменялся в довольно широких пределах (от отсутствия до 0,2 %) [17].

Таблица 1 - Результаты химического анализа образцов каучука СКС-30 АРКП, выделенных из латекса водными растворами ВПК-402 с различной молекулярной массой

Характеристическая	N	Лассовая доля, %				Потеря
вязкость [η] ВПК-		мыл органи-	золы	связанного	меди	массы
402 в 0,1 М водном	ческих	ческих кислот		стирола	железа	при сушке, %
NaCl	кислот					
0,76	5,6	0,10	0,14	22,7	0,0002	0,12
1,13	5,4	0,08	0,16	22,7	0,006	0,11
1,28	5,5	0,11	0,15	22,7	0,0001	0,14
1,73	5,6	0,09	0,13	22,7	0,007	0,13
2,25	5,7	0,10	0,12	22,7	0,0001	0,14
2,51	5,5	0,12	0,13	22,7	0,005	0,12
3,10	5,6	0,09	0,11	22,7	0,0002	0,13
					0,006	
					0,0002	
					0,005	
					0,0001	
					0,006	
					0,0001	
					0,005	

Таблица 2 - Свойства каучука СКС-30 АРК, выделенного с помощью коагулянта ВПК-402, а также резиновых смесей и вулканизатов на его основе

Показатели	Коагулирующий		
	агент		
	*ВПК-402	NaCl	
Содержание, масс. %:			
- свободных органических	6,3-6,8	5,8	
кислот	Отсутст-	0,15	
- связанных органических	вуют		
кислот.	1,3	1,3	
- 30лы	0,12	0,18	
- связанного стирола	22,5	22,5	
Потеря массы при 105°C, %	0,13	0,19	
Вязкость по Муни	54	52	
Эластическое	3,0	3,0	
восстановление, мм			
Напряжение при 300 %	9,4	8,3	
удлинении, МПа			
Условная прочность при	27,8	28,8	
растяжении, МПа			

Относительное	удлинение	580	630
при разрыве, %			
Относительная	остаточная	10	14
деформация после	е разрыва, %		
Эластичность по	этскоку, %	40	42
Продолжительнос	СТЬ	60	80
вулканизации, ми	H.		

При этом было обнаружено, что величина молекулярной массы полиэлектролита не оказывала существенного влияния на свойства получаемого каучука и свойства вулканизатов на его основе.

Таким образом, по величине показателей всего комплекса свойств резиновые смеси и вулканизаты на основе каучука, выделенного из латекса катионными полиэлектролитом, не уступали по свойствам контрольному образцу.

Оценка возможного влияние поли-N,N-диметил-N,N-диаллиламмоний хлорида и продуктов его взаимодействия с компонентами латекса на свойства каучуков, резиновых смесей и их вулканизатов Однако резиновые смеси на основе каучука СКС-30 АРК вулканизовались быстрее. Роль ускорителей вулканизации могли выполнять остающиеся в каучуке после коагуляции полимерная четвертичная соль аммония и/или продукты ее взаимодействия с компонентами эмульсионной системы [17].

Действительно, мыла канифоли, СЖК, таллового масла, а также лейканол и некаль активно взаимодействовали с ПДМДААХ как повышенных, так и при комнатной температурах. взаимодействия ВПК-402 Процессы эмульгаторами (мылами) [23] описываются обменными реакциями, которые имеют место при коагуляции латекса. Например, взаимодействия ВПК-402 с парафинатом натрия (или калия) можно представить в следующем виде:

$$(\begin{array}{c} \longleftarrow_{\text{CH}_2\text{-CH}} \rightarrow_{\text{HC}} \longrightarrow_{\text{CH}_2} \rightarrow_{\text{In}} \\ & \longleftarrow_{\text{CH}_2} \rightarrow_{\text{CH}} \rightarrow_{\text{CH}_2} \rightarrow_{\text{In}} \\ & \longleftarrow_{\text{H}_2\text{C}} \longrightarrow_{\text{CH}_2} \rightarrow_{\text{In}} \\ & \longleftarrow_{\text{CH}_2} \rightarrow_{\text{CH}_2} \rightarrow_{\text{CH}_2} \rightarrow_{\text{In}} \\ & \longleftarrow_{\text{CH}_2} \rightarrow_{\text{CH}_2} \rightarrow_{\text{CH}_2} \rightarrow_{\text{CH}_2} \\ & \longleftarrow_{\text{CH}_2} \rightarrow_{\text{CH}_2} \rightarrow_{\text{$$

ПДМДААХ аналогично взаимодействует с мылами канифоли, таллового масла и сульфокислот. При подкислении среды образовавшийся продукт взаимодействует с серной кислотой с выделением свободных жирных кислот. При обработке щелочью выделенных кислот они вновь переходят в мыло [23].

Постепенное увеличение дозировки ВПК-402 приводит к снижению содержания эмульгаторов в растворе и образованию нерастворимых продуктов их взаимодействия. При этом полнота связывания каждого из эмульгаторов полиэлектролитом определяется их природой. По количеству коагулянта ВПК-402, израсходованного на связывание компонентов эмульгатора, их можно расположить в ряд: мыло канифоли > некаль > мыло таллового масла > парафинат калия > лейканол [23].

Характер замеченных зависимостей хорошо согласуется с результатами исследований [24, 25], в которых прослежена роль коагулянтов катионного типа, близких по структуре к ПДМДААХ. Коагулирующее действие коагулянтов такого типа связано с "нейтрализацией электрического заряда" частиц вследствие взаимодействия катионных групп макромолекул с анионноактивными эмульгаторами,

в результате чего образуются нерастворимые недиссоциирующие ионные комплексы.

На основе проведенных исследований можно сделать вывод, что при коагуляции латекса (рН = 3-4, температура 50-60°С) в каучуке без разложения остается только продукт взаимодействия лейканола с ПДМДААХ. Кроме того, нельзя исключить и частичное присутствие в каучуке продуктов взаимодействия ПДМДААХ с мылами карбоновых кислот. Хотя на основе вышеприведенных результатов исследований можно сделать вывод, что они в значительной степени могут претерпевать изменения в кислой среде.

Таким образом, в каучуках эмульсионной полимеризации всегда будут присутствовать продукты взаимодействия ПДМДААХ с компонентами эмульсионной системы. По этой причине было изучено поведения резиновых смесей и вулканизатов на их основе, в которые были добавлены ПДМДААХ и продукты его взаимодействия с мылами карбоновых кислот [26].

Прежде всего, было исследовано влияние ПДМДААХ и продуктов его взаимодействия с мылами карбоновых кислот на скорость вулканизации стандартных резиновых смесей на основе каучуков СКС-30 АРКМ-15, СКС-30 АРК, СКС-30 АРКП. Установлено, что наибольшее влияние на скорость вулканизации резиновых смесей оказывают продукты, полученные взаимодействием ПДМДААХ с мылами на основе канифоли и парафината калия. Смеси, содержащие чистый ПДМДААХ, оказывли меньшее влияние. При увеличении содержания в резиновой смеси ПДМДААХ или продуктов его взаимодействия с мылами скорость вулканизации существенно повышалась.

Напротив, введение в резиновые смеси индивидуального ПДМДААХ оказывало отрицательное влияние на прочностные показатели получаемого материала. Показатели физико-химических свойств вулканизатов смесей с индивидуальным ПДМДААХ характеризовались достаточно широким разбросом данных, что связано вероятнее всего с недостаточно хорошей его совместимостью с каучуком.

Основные физико-механические показатели вулканизатов резиновых смесей на основе маслона-полненного каучука СКС-30 АРКМ-15, содержащих ПДМДААХ и продукты его взаимодействия с мылами карбоновых кислот, приведены в табл. 3.

Таблица 3 - Физико-механические показатели резин на основе каучука СКС-30 APKM-15, содержащих ПДМДААХ и продукты его взаимодействия с мылами карбоновых кислот

Вводимые	Напряжение	Прочность	Относительное	Остаточное
продукты	при 300 %	при	удлинение при	удлинение
	удлинении,	разрыве,	разрыве, %	после
	МПа	МПа		разрыва, %
Без добавок	7,6	25,8	650	22
ПДМДААХ	9,7	25,4	560	17
Продукт взаимодействия				
ПДМДААХ с:				
- мылом диспропорционированной				
канифоли;	9,9	25,1	552	18
- парафинатом калия.	6,9	27,7	561	22

Подобные результаты были получены для резиновых смесей и вулканизатов, приготовленных на основе СКД [26].

Для исследованных марок каучуков было отмечено [26], что содержащийся в резиновых смесях продукт взаимодействия ПДМДААХ с мылами диспропорционированной канифоли может выполнять также функции пластификатора. При его содержании в резиновых смесях до 1,0 % заметно изменялась вязкость по Муни и другие показатели резиновых смесей и резин (табл. 10, 11). Даже минимальное содержание данного продукта в смесях уменьшало разброс значений показателей свойств образцов [26].

Аналогичные результаты были получены при исследовании процесса выделения промышлен-

ного эмульсионного полибутадиена (ЭПБ) с помощью ВПК-402 [27]. Традиционная технология выделения требовала использование 180-250 кг/т каучука NaCl и 14-16 кг/т каучука H_2SO_4 (pH серума 2.8 ± 0.2). В случае применения ВПК-402 были отработаны следующие оптимальные условия процесса:

- расход флокулянта ВПК-402 до 5,0 кг/т каучука (табл. 4);
- рабочая концентрация ВПК-402 15-20%;
- температура проведения процесса $60-80^{0}$ С (табл. 4);
- расход подкисляющего агента (H_2SO_4) $\geq 11~\text{кг/т}$ каучука).

Таблица 4 - Влияние расходной нормы ВПК-402 и температуры процесса на количество образующегося коагулюма. Расход H_2SO_4 15 кг/т каучука

Расходная норма	Количество коагулюма, масс%, при температуре коагуляции, °С			
ВПК-402, кг/т кау-	20	40	60	80
чука				
0,5	5,0-8,0	7,0-9,0	8,0-10,0	8,0-10,0
1,0	10,5-14,0	-	-	-
1,5	16,0-19,0	21,0-25,0	26,0-30,0	62,0-65,0
20	22,8-25,0	-	-	-
3,0	38,0-40,0	43,0-45,0	47,0-50,0	62,0-65,0
4,0	54,0-560	62,0-65,0	69,0-73,0	80,0-83,0
5,0	67,0-69,5	88,0-91,0	94,0-96,0	94,0-97,0
6,0	86,0-88,0	94,0-97,0	96,0-98,0	96,0-98,0
7,0	92,0-94,0	94,0-97,0	96,0-98,0	96,0-98,0
8,0	93,0-96,0	96,0-97,0	96,0-98,0	96,0-98,0

Показано, что изменение концентрации рабочего раствора ВПК-402 от 2,0 до 45,0% практически не влияло на его расходную норму. При использовании в качестве флокулянта ВПК-402 процесс выделения каучука из латекса оказывался менее чувствительным к изменениям дозировки H_2SO_4 , чем при использовании в качестве коагулянта NaCl. Проведенные сравнительные испытания каучуков, резиновых смесей и вулканизатов эмульсионного маслонаполненного эмульсионного полибутадиена показали равноценность основных показателей как в случае использования NaCl (200 кг/т каучука), так и ВПК-402 (6 кг/т каучука) (табл. 5).

Таблица 5 - Свойства каучуков, резиновых смесей и вулканизатов маслонаполненного ЭПБ

emeter if by strains a tob mates		IIIOI O JIID
Показатель	Коагулирующий аген	
	NaCl	ВПК-402
Содержание, масс. %:		
- свободных органических	5,6	6,0
кислот;		
- связанных органических	0,10	отсутствует
кислот;		
- антиоксиданта ВС-1;	0,25	0,25
- золы;	0,18	0,12
- масел ПН-6К.	15,0	15,0
Потеря массы при 105°C, %	0,20	0,15
Вязкость по Муни	40,0	40,0
Пластичность	0,37	0,37
Напряжение при 300 %	10,3	12,0
удлинении, МПа		

Относительное удлинение	480	430
при разрыве, %		
Относительная остаточная	10	6
деформация после разрыва,		
%		
Условная прочность при	18,6	17,7
растяжении, МПа		

Необходимо отметить, что подобно другим резиновым смесям резиновые смеси, приготовленные на основе маслонаполненного ЭПБ, выделенного из латекса с помощью ВПК-402, вулканизовались несколько быстрее, чем в случае с NaCl [27]. Возможная причина этого объяснялась ранее в этой статье: присутствие в резиновой смеси продуктов взаимодействия ПДМДААХ с компонентами эмульсионной системы.

Сополимер поли-N,N-диметил-N,Nдиаллиламмоний хлорида с двуокисью серы – флокулянт

Введение дополнительного сомономера в состав сополимера может привести к снижению стоимости флокулянта ВПК-402, что сделает его более конкурентоспособным. Кроме того, введение в состав полимерной цепи звеньев, содержащих различные функциональные группы, позволяет, варьируя химический состав коагулянта, изменять пространственную структуру, заряд и, следовательно, влиять на его флокулирующую способность. По этой причине был исследован ряд сополимеров N,N-диметил-N,N-диаллиламмоний хлорида с акрилами-

дом, двуокисью серы, малеиновым ангидридом, акрилонитрилом и т.п.

В данном разделе представлены результаты изучения коагулирующего действия чередующегося сополимера N,N-диметил-N, N-диаллиламмоний хлорида с SO₂ на бутадиен-стирольный латекс СКС-30 АРК и латекс эмульсионного полибутадиена (ЭПБ) (промышленные образцы), а также влияние этого флокулянта на свойства выделенных каучуков и вулканизатов на их основе. [28]. Этот сополимер под торговым названием «ВПК-10» выпускается в настоящее время в промышленных масштабах в ОАО «Технолог» (г. Стерлитамак, Башкирия). В соответствии с санитарно-эпидемиологическим заключением (№ 2 БЦ.01.2.48.П.000651.05.02 от 16.05.2002г.) он предназначен для применения в цинкатных электролитах в гальванотехнике. Структура чередующегося сополимера ВПК-10 может быть представлена формулой:

$$(\begin{array}{c|c} CH_2\text{-}CH & HC & CH_2\text{-}SO_2 \\ \hline \\ H_2C & CH_2 \\ \hline \\ H_3C & CH_3 \\ \end{array})$$

Было найдено, что уменьшение содержания ВПК-10 в растворах приводит к снижению рН. Зависимость lgC-рН имеет линейный характер. Поэтому был сделан вывод о том, что целесообразно использовать концентрированные растворы данной соли, так как они имеют низкие значения рН. Это может позволить исключить применение дополнительного подкисления коагулируемой смеси серной кислотой.

Проведенные экспериментальные исследования по влиянию расхода ВПК-10 на процесс выделения каучуков, получаемых методом эмульсионной (со)полимеризации из латексов СКС-30 АРК и полибутадиена (ЭПБ) показали, что количество образующегося коагулюма имеет экстремальную зависимость. Полнота коагуляции латекса СКС-30 АРК достигалась при расходе ВПК-10 18-20 кг/т каучука, а ЭПБ - 14-15 кг/т каучука. Экстремальная зависимость процесса коагуляции латексов от расхода ВПК-10 может быть связана с тем, что при повышенных расходах флокулянта

происходит перезарядка системы и флокулянт начинает выполнять функцию стабилизатора, Поэтому происходит снижение эффективности выделения каучука. Таким образом, проведенные исследования показывают, что использование в качестве коагулирующего агента ВПК-10 будет требовать соблюдения точных его дозировок.

Введение дополнительных количеств Н2SO4 в качестве подкисляющего агента при оптимальном расходе ВПК-10 не оказало существенного влияния на количество образующегося коагулюма. Однако влияние дозировки H₂SO₄ было существенным при пониженных расходах флокулянта. Так, при расходе ВПК-10 9,0 кг/т каучука полнота выделения каучука СКС-30 АРК из латекса достигалась при расходе H_2SO_4 8,0 $\kappa\Gamma/T$ каучука. Аналогичные закономерности были отмечены и при коагуляции ЭПБ. При расходе ВПК-10 10,8 кг/т каучука полнота коагуляции достигалась при расходе Н₂SO₄ 6.0 кг/т каучука [28].

Химический анализ серума, образующегося после коагуляции латекса СКС-30 АРК сополимером ВПК-10, показал (табл. 6), что количество сухих остатков в серуме примерно в 10-20 раз меньше, чем в серуме после выделения каучука коагулянтом NaCl [28]. Это свидетельствовало о том, что содержание мыл синтетических жирных кислот (СЖК), канифольного мыла на основе таллового масла, лейканола и других компонентов эмульсионной системы в контрольном серуме значительно выше, чем в экспериментальном. Процессы взаимодействия ВПК-10 с эмульгаторами могут быть описаны выше описанными обменными реакциями, которые имеют место при коагуляции латекса.

Физико-механические свойства вулканизатов на основе каучука СКС-30 АРК, выделенного из латекса с использованием в качестве коагулирующего агента ВПК-10 и NaCl, представлены в табл. 7.

Кинетические кривые вулканизации резиновых смесей на основе каучука СКС-30 АРК показали, что резиновые смеси на основе каучука, выделенного из латекса коагулянтом ВПК-10, вулканизуются быстрее, чем контрольный образец, выделенный NaCl. Функцию ускорителей процесса вулканизации в данном случае также выполняют или

Таблица 6 - Химический анализ серума, образующегося при коагуляции латекса СКС-30 АРК

таолица о - жими ческий анализ серума, образующегося при коагуляции латекса СКС-30 АТК				
Показатели		Коагулянт		
	NaCl		ВПК-10	
		с подкислением	без подкисления	
рН	3,2	7,7	8,2	
Сухой остаток, %	3,75	0,19	0,21	
Содержание хлор-ионов, %	2,01	0,37	0,36	
Лейканол, %	0,012	0,0073	0,007	
Органических кислот, %	0,028	0,008	0,01	
Мыл органических кислот, %	0,019	0,008	0,02	

сам катионоактивный коагулянт ВПК-10, или продукты его взаимодействия с компонентами эмульсионной системы. Аналогичные закономерности наблюдали и при использовании в качестве коагулирующего агента гомо- и сополимера N,N-диметил-N,N-диаллиламмоний хлорида. Физико-

механические испытания (табл. 7) показали небольшое увеличение прочностных показателей вулканизатов на основе каучука, выделенного из латекса помощью ВПК-10в сравнении с контрольным образцом, где в качестве коагулянта использован NaCl [28].

Таблица 7 - Физико-механические показатели вулканизатов на основе каучука СКС-30 АРК

Показатели	Коагулянт		
	NaCl	ВПК-10	
		С подкислением	Без подкисления
Условное напряжение при 300 %			
удлинении, МПа	12,7	13,1	12,7
Условная прочность при растяжении,			
МПа	19,6	23,0	25,5
Относительное удлинение при			
разрыве, %	420	460	480
Относительная остаточная			
деформация после разрыва, %	8	10	10

Сополимер поли-N,N-диметил-N,N-диаллиламмоний хлорида с малеиновой кислотой -флокулянт

Статистический сополимер поли-N,N-диметил-N,N-диаллиламмоний хлорида с малеиновой кислотой формулы

был синтезирован в лабораторных условиях в НПО «Технолог» под торговой маркой «ВПК-10М» в виде водного раствора с концентрацией \sim 51 мас%; рН \sim 2 и молекулярной массой $5-8\cdot10^3$.

Было показано [29, 30], что масса образующегося коагулюма закономерно возрастала с увеличением добавки ВПК-10М. Полнота коагуляции достигалась при его расходе 2.5-3.0 кг/т каучука (добавка серной кислоты была постоянной и составляла ~ 15 кг/т каучука). На расход сополимера ВПК-10М, необходимого для полного выделения каучука из латекса, оказывала влияние температура. Причем наибольший выход коагулюма наблюдали при пониженных температурах (1-20 $^{\circ}$ C). Повышение температуры коагуляции приводило к небольшому снижению массы образующегося коагулюма, что может быть обусловлено несколькими причинами:

- во-первых, при низких температурах снижается растворимость и вымываемость из крошки каучука коагулирующего агента, а также продуктов его взаимодействия с ПАВ;
- во-вторых, при пониженных температурах отмечается образование более плотного коагулюма, в то время как повышение температуры приводит к увеличению его «рыхлости». А увеличению «рыхлости» серума, в свою очередь, сопровождается накоплением в нем некоторого количества мелкодисперсной трудно улавливаемой крошки каучука.

Данные закономерности были получены при коагуляции высококонцентрированного промышленного латекса (21.1 масс.%). Уменьшение концентрации дисперсной фазы при 20°С (разбавление 1:1; 1:2; 1:3) приводило к увеличению расхода коагулирующего агента до 3-4 кг/т каучука против 2 кг/т для исходного латекса [29, 30].

Увеличение расхода коагулирующего агента, сопровождалось изменением характера зависи-

мости полноты коагуляции от количества флокулянта, что наиболее ярко проявляялось при наибольшем разбавлении латекса. Так при концентрации дисперсной фазы \sim 5.3 масс.% и температуре 80^{0} С наблюдали оптимум флокуляции, отклонение от которого в сторону повышения расхода ВПК-10М, приводило к снижению массы образующегося коагулюма.

Как и в случае, неоднократно наблюдаемом для флокуляции латексов СКС-30 АРК с применением ВПК-402, это явление перезарядки объясняется адсорбцией заряженных макромолекул сополимера на поверхности частиц. При этом возникает два эффекта:

- нейтрализация частиц латекса за счет взаимодействия анионов ПАВ с катионными группами полиэлектролита с образованием нерастворимого комплекса,
- формирование противоположно заряженного (при избытке флокулянта) защитного адсорбционного слоя. Кроме того, возможно, что после завершения взаимодействия четвертичных аммонийных групп ВПК-10М с анионами ПАВ свободные карбонильные группы малеиновой кислоты взаимодействуют с катионами натрия с образованием соответствующей соли, способной выполнять функцию ПАВ нового защитного слоя.

Однако при высоком значении концентрации промышленного латекса промежутки времени между столкновениями становятся очень малы. Поэтому не происходит достаточного сглаживания адсорбированных на частицах латекса макромолекул и сохраняется способность к мостикообразованию. Тогда, даже, несмотря на перезарядку и появление электрического отталкивания, сохраняется флоккулирующая активность катионного полиэлектролита за счет мостичного механизма и максимум, наблюдаемый на кривых флоккуляции низко концентрированных латексов, утрачивается. Происходит полное разрушение дисперсной фазы и полное выделение каучука из латекса.

Исследование влияния количества H_2SO_4 на процесс выделения каучука из промышленного латекса позволило обнаружить [29, 30]:

- при использовании ВПК-10М в количестве 1,0 кг·т $^{-1}$ каучука и интервале расхода кислоты 5.0÷30.0 кг/т каучука максимальный выход образующегося коагулюма достигал в лучшем случае 80 масс. % (температура коагуляции 1-20°C),

- при увеличении добавки ВПК-10М до $1.5~\rm kг/\tau$ каучука наибольшая полнота коагуляции достигала 91 масс. % при расходе $\rm H_2SO_4~30.0~\rm kr/\tau$ каучука.

При определении физико-механических показателей резиновых смесей и вулканизатов на основе бутадиен-стирольного каучука СКС-30 АРК, выделенного из латекса сополимером ВПК-10М, обнаружено, что резиновые смеси на основе опытного образца вулканизовались быстрее, чем контрольного. Экспериментальный образец обладал более высокими показателями: устойчивостью к тепловому старению и сопротивлению разрастанию трещин. Отклонения в других показателях находились в пределах ошибки опыта (табл. 8) [29].

Таблица 8 - Свойства резиновых смесей и вулканизатов на основе каучука СКС-30 АРК

	Результ	Результаты испытаний		
Наименование показателей	ВПК-10М	NaCl		
Вязкость по Муни резиновых смесей МБ 1+4 (100 °C)	60.5	63.0		
Условное напряжение при 300 % удлинении, МПа	6.3	6.7		
Условная прочность при растяжении, МПа	21.9	25.1		
Относительное удлинение при разрыве, %	650	690		
Относительная остаточная деформация, %	16	20		
Эластичность по отскоку, %: при 20 °C	48	46		
при 60 °C	50	50		
Твердость по Шору А	51	48		
Сопротивление раздиру, кН/м	61.0	58.0		
Сопротивление разрастанию трещин с проколом до 12 мм, тыс.циклов	112.7	98.6		
Коэффициент стойкости к тепловому старению (72 ч, 100 °C):				
- по условной прочности	0.71	0.63		
- по относительному удлинению	0.43	0.38		

Таким образом, полнота выделения каучука из латекса была достигнута при использовании ВПК-10М в количестве 1,5 кг/т каучука и расходе $\rm H_2SO_4$ 30 кг/т каучука.

Сополимер поли-N,N-диметил-N,Nдиаллиламмоний хлорида с акриламидом флокулянт

Статистический сополимер поли-N,N-диметил-N,N-диаллиламмоний хлорида (СДДА-XAA) с акриламидом кислотой формулы

был синтезирован в лабораторных условиях в НПО «Технолог» под торговой маркой «ВПК-10М» в виде водного раствора с концентрацией ~45 мас%; рН ~5. Особый интерес к этому сополимеру вызван тем, что акриламид является продуктом много тоннажного производства и является сравнительно недорогим сырьем для синтеза сополимеров.

Исследования по коагуляции проводили на промышленном образце бутадиен-стирольного латекса СКС-30 АРК [31, 32]. Наиболее вероятными механизмами флоккуляции латекса при действии СДДАХАА также является сочетание двух механизмов - нейтрализационного и мостикообразования.

Было обнаружено закономерное повышение массы образующегося коагулюма с увеличением добавок сополимера. Однако вплоть до дозировок СДДАХАА 6 кг/т каучука не происходило 100%ного выделения полимера (максимальное количество полученного каучука достигалось в пределах 90 мас%). Также обнаружено, что эффективность коа-

гулирующего действия увеличивается с ростом температуры. Наибольшая полнота выделения достигалась при 80° С и добавке СДДАХАА 5 кг/т каучука. Это может объясняться тем, что при повышении температуры растет энергия молекул, приводящая к увеличению числа эффективных столкновений, что сопровождается агломерацией латексных частиц.

Является важным изучение влияния концентрации дисперсной фазы (степени разбавления латекса) на полноту коагуляции, так как концентрация дисперсной фазы в заводских условиях может изменяться в достаточно широких пределах (от 10 до 22 мас%). Такие широкие колебания концентрации дисперсной фазы будут отрицательно сказываются на процессе выделения каучука, т.е. на расходе коагулирующего агента, что может привести к нарушению технологического процесса, неполному выделению каучука и загрязнению сточных вод латексными стоками. Это сопровождается потерей каучука, снижением производительности процесса и ухудшением экологии. Проведенные исследования показали [31, 32], что расход коагулянта СДДАХАА с увеличением степени разбавления (уменьшением концентрации дисперсной фазы) практически остается постоянным во всем исследованном интервале концентраций, что не согласуется с результатами опубликованных ранее работ [19, 29, 30]. Причиной этого явления может быть то, что в изученной области концентраций латекса (от 50 до 200 г·л⁻¹) скорость диффузии коагулянта к поверхности каучуковых глобул не является решающей в процессе выделения каучука. Определяющим фактором процесса коагуляции латекса СКС-30 АРК при использовании в качестве полиэлектролита СДДАХАА можно считать нейтрализацию заряда его частиц по мере увеличения концентрации коагулянта, что приводит к падению устойчивости системы. Нейтрализация поверхностного заряда обусловлена химическим взаимодействием катиона коагулянта и аниона ПАВ - стабилизатора, входящего в состав адсорбционного слоя на поверхности частиц. При этом образуется нерастворимый и недиссоциирующий комплекс [29, 30].

Было обнаружено [31, 32], что при разбавлении латекса наблюдается снижение массы образующегося коагулюма при передозировке изучаемого коагулянта. Так, при повышении расхода СДДАХАА до 4 - 6 кг/т каучука (в зависимости от температуры) отмечается снижение выхода коагулюма, что может быть объяснено перезарядкой системы. Явления перезарядки ранее неоднократно подтверждались экспериментально при изучении коагулирующего действия ПДМДААХ на латексах СКС-30 АРК [28].

Полнота выделения каучука из латекса в большой степени зависит от расхода коагулирующего и подкисляющего агентов, поэтому при постоянной добавке катионного полиэлектролита СДДА-XAA (4,0 кг/т каучука) определяли массу образующегося коагулюма при разных концентрациях подкисляющего агента (H_2SO_4). Показано, что повышение температуры до $80-95^{\circ}C$ позволяет снизить расход H_2SO_4 с 20 до 15 кг/т каучука.

Обнаружено, что резиновые смеси и вулканизаты на основе опытного и контрольного (NaCl) образцов обладают примерно одинаковыми свойствами. Необходимо отметить наблюдаемое небольшое повышение устойчивости к тепловому старению экспериментальных резин (табл. 9) [32].

Таблица 9 - Свойства резиновых смесей и вулканизатов на основе каучука СКС-30 АРК

Наименование показа-	Результаты испытаний		
телей	Эксперимент	NaCl	
Вязкость по Муни ре-	55.0	53.0	
зиновых смесей			
МБ 1+4 (100 °C)			
Условное напряжение	7.5	6.7	
при 300 % удлинении,			
МПа			
Условная прочность	25.6	22.3	
при растяжении, МПа			
Относительное удли-	560	590	
нение при разрыве, %			
Относительная оста-	12	14	
точная деформация, %			
Эластичность по от-			
скоку, %:			
при 20 °C	49	47	
при 60 ⁰ C	50	51	
Твердость по Шору А	51	49	
Сопротивление разди-	62.0	58.0	
ру, кН/м			
Коэффициент стой-			
кости к тепловому ста-			
рению (72 ч, 100°С):			
- по условной прочности	0.74	0.63	
- по относительному			
удлинению	0.46	0.38	

Поли-(N,N-диметил-2-оксипропиленаммоний) хлорид - флокулянт

Промышленный катионный полиэлектролит поли-(N,N-диметил-2-оксипропиленаммоний) хлорид (торговое название - «Каустамин-15») относится к нетоксичным соединениям. В соответствии с санитарно-эпидемиологическим заключением (№ 77.99.04.222.Д.007095.10.02 от 16.10.2002 г.) он предназначен в качестве коагулянта для очистки питьевой воды в системах хозяйственно-питьевого водоснабжения и очистки сточных вод. В настоящее время «Каустамин-15» производят на опытнопромышленной установке опытного цеха ОАО «Каустик» (г. Стерлитамак, Башкирия). Его структурная формула

$$\begin{array}{c} \operatorname{CH_3} \\ | \\ (---\operatorname{N^+--CH_2-CH--CH_2--})_n \\ | \operatorname{Cl^-} \\ | \operatorname{CH_3} & \operatorname{OH} \end{array}$$

Прежде всего, было исследовано влияние на процесс коагуляции латекса такого важного технологического показателя, как концентрация дисперсной фазы [33]. В реальных промышленных условиях содержание полимера в латексе может изменяться от 10 до 22 %. Наличие таких существенных колебании концентраций может отражаться на расходе «Каустамина-15», требуемом для полного выделения каучука из латекса. Было показано, что концентрация дисперсной фазы (в указанном интервале значений) оказывает незначительное влияние на расход «Каустамина-15». Увеличение концентрации дисперсной фазы от 50 до 100 г/л приводило к уменьшению расхода «Каустамина-15» на 1 кг/т каучука (с 5 до 4 кг/т каучука). Дальнейший рост концентрации дисперсной фазы до 150 г/л не влиял на расход «Каустамина-15».

Показано, что изменение температуры также не оказывало существенного влияния на процесс выделения каучука из латекса. Хотя, было отмечено некоторое увеличение массы образующегося коагулюма с повышением температуры с 20 до 80° С на начальных стадиях процесса выделения (при малых расходах «Каустамина-15»). Однако полное выделения каучука из латекса достигалось при практически одном и том же расходе «Каустамина-15». Расход H_2SO_4 на подкисление коагулируемой системы в этих опытах составлял 15 кг/т каучука.

Важным показателем технологического процесса выделения каучука из латекса является расход подкисляющего агента - водного раствора H_2SO_4 . Проведенными исследованиями установлено, что расход подкисляющего агента оказывает более существенное влияние на процесс коагуляции, чем температура и концентрация дисперсной фазы в исследованных интервалах. Так, при расходе «Каустамина-15» $\sim 4~\text{кг/т}$ каучука масса образующегося коагулюма закономерно возрастает с увеличением количества введенной H_2SO_4 и достигает $\sim 100~\%$ при расходе H_2SO_4 15 кг/т каучука. Дальнейшее увеличение расхода подкисляющего агента (более 15 кг/т каучука) при данном расходе «Каустамина-

15» было нецелесообразным, так как приводило к перерасходу H_2SO_4 и загрязнению сточных вод.

Снижение расхода «Каустамина-15» с 4 до 3 кг/т каучука позволило достичь полной коагуляции латекса СКС-30 АРК только в случае проведения процесса при высоких температурах 80-95°С и расходе подкисляющего агента — до 30 кг/т каучука. Напротив, при снижении расхода «Каустамина-15» до 2 кг/т каучука полное выделение каучука не достигалось даже при этих температурах.

Таким образом, оптимальными технологическими параметрами процесса коагуляции СКС-30 АРК с концентрацией дисперсной фазы 100 г/л являются: расход «Каустамина-15» — 3 кг/т каучука в зависимости от экспериментальных условий; расход

 $H_2SO_4 - 15$ кг/т каучука; температура -60 ± 10^{9} С [33].

Как и другие выше описанные катионные полиэлектролиты «Каустамин-15» взаимодействует с эмульгаторами (калиевое мыло таллового масла, парафинат натрия и лейканол) за счет протекания обменных реакций.

При оптимальном технологическом режиме было проведено выделение опытного количества коагулюма каучука СКС-30 АРК, на основе которого были приготовлены резиновые смеси и вулканизаты. Результаты испытаний показали, что резиновые смеси и вулканизаты на основе экспериментального каучука не уступают контрольному (NaCl) образцу (табл. 10).

Таблица 10 - Свойства резиновых смесей и вулканизатов на основе каучука СКС-30 АРК, выделенного с применением флокулянта «Каустамин-15»

The state of the s		-
Показатели	NaCl	Эксперимент
Вязкость по Муни	53	42.5
Пластичность по Карреру, усл. ед	0.30	0.28
Восстатавливаемость, мм	1.86	1.84
Оптимум вулканизации при 143 °C, мин.	80	60
Условное напряжение при 300 % удлинении, МПа	8.4	14.0
Условная прочность при растяжении, МПа	27.0	27.6
Относительное удлинение при разрыве, %	600	540
Относительная остаточная деформация, %	16	15
Эластичность по отскоку, %:		
- при 20 ⁰ C	37	32
- при 100 ⁰ C	50	46
Твердость по Шору, усл. ед.	59	65
Истирание по Шопперу-Шлобаху, 10 ⁻³ см ³ /м	1.80	1.31
Сопротивление разрастанию порезов до 12 мм с проколом, тыс.	39200	115200
циклов		
Условная прочность при растяжении после старения (100 °C, 72 ч)	18.0	20.0
Относительное удлинение после старения (100°C, 72 ч)	242	257

Экологическая необходимость применения полимерных ЧАС

Для полного выделения 1 тонны различных типов каучука необходимо вводить до 170 кг NaCl, до 20 кг бишофита и 15 кг H_2SO_4 . При отмывании каучуковой крошки, эти реагенты преимущественно уходят в сточные воды и вместе с ними далее в водоемы. Очистка промышленных сточных вод от солей металлов не производится, что приводит к сильному засолению почв этими солями.

Кроме того при синтезе каучуков используются биологически неразлагаемые эмульгаторы, например, лейканол. Предупреждение попадания ПАВ в природные водоемы стало особенно актуальным после того, как было изучено их влияние на организм человека и животных. Обнаружено, что ПАВ не только ухудшают вкус воды, но изменяют состав крови, снижают иммунитет, способны накапливаться в печени и мозге [34]. Постепенное проникновение в почву и накопление ПАВ в подпочвенных грунтовых водах приводит к опасности их появления в питьевой воде артезианских скважин.

Как было указано в предыдущих разделах, перспективность применения полимерных ЧАС в качестве коагулянтов связана с двумя факторами:

- 1. четвертичные соли аммония обладают высокой коагулирующей способностью;
- 2. они образуют с ПАВ латекса нерастворимые соединения, которые прочно закрепляются на крошке образовавшегося каучука; реакция взаимодействия этих компонентов была представлена выше

Рассмотренные в данной работе флокулянты обладают высокой эффективностью коагулирующего действия. При правильной дозировке они должны практически полностью связывать ПАВ латекса и предотвращать их попадание на очистные сооружения, вследствие чего будет заметно улучшаться качество промышленных сточных вод. Для полного выделения каучука требуется 1,5-5,0 кг какого-либо из этих коагулянтов на тонну каучука при одновременном применении Н2SO4 в качестве подкисляющего агента. Применение чередующегося сополимера N,N-диметил-N,N-диаллиламмоний хлорида с SO₂ (ВПК-10) для выделения каучуков из латексов позволяет исключить H₂SO₄ из технологического процесса, что положительно выделяет его из трех изученных сополимеров. Однако в этом случае расход ВПК-10 возрастает до 15-18 кг/т каучука.

Влияние природы коагулирующего агента на содержание загрязнений в водной фазе показа-

но в табл. 11. Помимо традиционного коагулянта NaCl в таблице приведены для сравнения результаты по измерению содержания приме-

сей при использовании мономерного N,Nдиметил-N,N-диаллиламмоний хлорида.

Таблица 11 - Влияние природы коагулирующего агента на содержание загрязнений в водной фазе

Показатели	Коагулянт					
	NaCl	Мономер	ВПК-402	ВПК-10	ВПК-10М	СДДАХАА
Расход коагулянта, кг/т каучука	150-170	25-30	3,0-5,0	3,0-5,0	4,5-5,0	2,0-3,5
рН коагуляции	2,5 - 3,5	2,5 - 3,5	3,0 - 4,0	2,5 - 3,0	2,5 - 3,5	2,5 - 3,0
Содержание лейканола в серуме, мг/дм ³	250-270	50-56	15-20	40-45	26-32	18-25
Содержание лейканола в сточной воде, мг/дм ³	120-140	5-8	3-6	11-16	8-13	6-11
XПК сточной воды, мг O_2 /дм ³	1220-1270	924-947	716-740	829-862	770-798	734-756
Сумма неорганических солей в сточной воде, мг/дм ³	10000- 10500	370-390	290-315	420-445	350-370	310-330

Видно, что применение хотя бы мономерной ЧАС позволяет уменьшить количество коагулянта в 6-7 раз при одновременном уменьшении количества загрязнений. Переход к полимерным ЧАС позволяет значительно уменьшить как количество коагулянта, так и количества загрязнений в серуме и в стоках.

За счет применения флокулянтов экологический ущерб в России может быть уменьшен в год за счет:

- отсутствия сброса, по крайней мере, 53 500 т/год NaCl;
- уменьшения объема промышленных стоков на 756 000 м³/год;
- уменьшения содержания лейканола в сточной воде не менее чем 630 т/год.
- В мире соответствующий ущерб может быть уменьшен на величины 9 600 000 т/год NaC1 и на $3\ 120\ 000\ \text{м}^3$ /год объема соответствующих промышленных стоков.

Прикладные работы с применением полимерных ЧАС или Реализация новых разработанных подходов в промышленных масштабах

Сравнительный анализ результатов лабораторных исследований, полученных для этих коагулянтов, позволил авторам работы отдать предпочтение полиэлектролиту ВПК-402 при выборе коагулянта для проведения прикладных работ на заводе. Преимуществами коагулянта ВПК-402 являлись:

- низкие расходные нормы;
- отсутствие токсичности; отсутствие отрицательного воздействия на окружающую среду;
- существование крупнотоннажного производства.

Прикладные работы были проведены авторами работы на базе центральной заводской лаборатории и промышленного цеха завода СК в г. Воронеж. В течение 1992 года были выпущены следующие партии маслонаполненного каучука марки СКС-30 APKM-15:

• 20 кг каучука, пилотная установка на базе опытного цеха ЦЗЛ;

- 24 т каучука, работа в 1 смену, производственный цех № 28;
- 67 т каучука, работа 1 сутки, производственный цех № 28;
- 236 т каучука, работа в течение 5 суток, производственный цех \mathbb{N}_2 28.

Расчеты показали, что реализация новой технологии по выделению суммарного количества каучука позволила значительно уменьшить на заводе СК величину промышленных стоков и содержание NaCl в них. Было отмечено, что выпуск промышленной партии каучука по новой технологии не сопровождался отклонением режима работы заводских очистных сооружений от штатного режима работы.

Проведенная прикладная работа отражена в 4-х актах Воронежского завода синтетического каучука. Следует отметить следующие положительные результаты проведенной работы:

- применение катионного полиэлектролита ВПК-402 не потребовало существенных изменений в технологии выделения каучуков из латексов и не потребовало никаких капиталовложений;
- полностью отработаны режимы промышленного производства каучука СКС-30 APKM-15:
- суммарно было выпущено 327 тонн каучука СКС-30 APKM-15;
- \bullet по своему качеству каучук отвечал ГОСТ и ТУ;
- разработанная и внедренная технология позволили значительно уменьшить экологическую нагрузку на окружающую среду.

Впоследствии, уже после выпуска промышленной партии каучука с применением ВПК-402 и после проведения авторским коллективом лабораторных исследовательских работ по коагуляции латексов с помощью полиэлектролитов ВПК-10 и «Каустамин-15» был осуществлен промышленный выпуск полиэлектролита ВПК-10. Еще позже была запущена пилотная установка по производству «Каустамина-15». С его применением в 2005 г. была выпущена опытная партия каучука СКС-30 АРК в

количестве 230 кг на пилотной установке опытного цеха ОАО «Каустик» (г. Стерлитамак, Башкирия).

Дополнительным фактором, способствующим выбору флокулянта, должно быть соотношение примерных цен за тонну исследованных полимерных ЧАС: 1739 \$ - ВПК-402; 1572 \$ - ВПК-10; 1093 \$ - «Каустамин-15».

Необходимо подчеркнуть, что применение катионных полиэлектролитов не потребовало и не потребует существенных изменений в технологии выделения каучуков из латексов и дополнительных капиталовложений.

Безусловно, нельзя исключать возможность попадания незначительного количества поли-N,N-диметил-N,N-диаллиламмоний хлорида вместе с серумом и промывными сточными водами в промышленные сточные воды. Однако, как уже говорилось выше, поли-N,N-диметил-N,N-диаллиламмоний хлорид не является токсикантом и разрешен к применению в рецептурах биоцидов.

Хронология развития работ по применению полимерных ЧАС

Основные научно-исследовательские работы по изучению биоцидных свойств поли-N,N-диметил-N,N-диаллиламмоний хлорида проведены в 1981-86 гг., а работы по исследованию флоккулирующих свойств — в 1983-96 гг.

При этом информация о выпуске промышленной партии СК с применением ВПК-402 опубликована еще в 1994 г. [14] с повторным упоминанием в 1997 г. в обзоре [16]. Основные результаты работы были также освещены в ряде других обзоров [35-38].

Целесообразность применения полимерных ЧАС была отмечена позднее в 2009 г. в работе сотрудников Воронежского филиала ФГУП "НИИСК" [2], правда без ссылок на многочисленные ранние публикации.

Это явилось дополнительной причиной нашего официального обращения в компанию «Сибур» с предложением заслушать на НТС компании результаты исследований, полученные с применением флокулянтов. По просьбе представителя компании ему были переданы результаты физикомеханических испытаний серии образцов резиновых смесей и вулканизатов, полученных с применением полимерных ЧАС. В удивительном ответе (2010 г.) гл. эксперта Управления развития технологий Дирекции СК компании «Сибур» Ю.А. Давыдова следовало: «...Предлагаемые Вами результаты испытаний имеют более высокие значения, чем требуется нам в производстве. В настоящее время мы пока не можем рассматривать Ваше предложение как наиболее оптимальное.». Причина такого ответа стала понятной после появления информации не в научной периодике, а лишь в СМИ. Оказалось, что в настоящее время разработанные и подробно описанные нами подходы реализуются как бы самостоятельно заводами СК в городах Воронеж, Омск, Тольятти и безо всяких ссылок на имеющиеся многочисленные научные публикации (см. ниже примеры цитат из имеющихся публикаций в прессе).

«Новости компании «Сибур» (2009).

«...Суть новой технологии заключается в замене реагента, участвующего в процессе выделения (коагуляции) каучука из латекса... Для повышения качества стоков была разработана технология бессолевой коагуляции с помощью нового синтетического реагента «Эпам».

«Городские ведомости» (2008).

На "Тольяттикаучуке", похоже, всерьез взялись за улучшение экологичности производства. Новшество заключается в замене соли, участвующей в процессе коагуляции, на новый синтетический реагент "Эпам". (Эпам — аналог «Каустамина-15» Мисин)

«Новости Омска» (2011)

«"Омский каучук" - флагман российского нефтехимического производства, единственный в нашей стране завод, освоивший уникальную методику бессолевой коагуляции получения каучуков».

«Воронежские полимеры».

«...Мы увидели такую возможность в использовании ВПК-402....Учли уроки первопроходцев 90-х годов, когда попытки внедрить нечто подобное с привлечением сил ВГТА не увенчались успехом.»

К большому сожалению, такой подход, продемонстрированный производителями СК, свидетельствует не только о недостатках этики производителей, но и о возможных общих причинах, по которым различные отечественные производители не успевают (или не хотят успевать) за новыми техническими решениями.

Благодарности

Пользуясь случаем, хотим поблагодарить большой коллектив соавторов из других организаций, которые приняли участие в этой работе, в том числе многих сотрудников Воронежского завода СК. Благодаря их усилиям была проделана не только большая исследовательская работа, но и выпущена промышленная партия каучука марки СКС-30 АРКМ-15.

Литература

- 1. Гришин Б.С. Материалы резиновой промышленности: В 2 т. Казань: КГТУ. 2010.
- 2. Ю.К. Гусев, В.Н. Папков Каучуки эмульсионной полимеризации. состояние производства в Российской Федерации и научно-исследовательские работы Воронежского филиала ФГУП "НИИСК" // http://www.niisk.vrn.ru/publications/Gusev_Papkov_2009_2.pdf. Опубл 2009 г.
- 3. Родоман В.Е., Черкашин М.И., Мисин В.М., Андрюхин М.И., Родоман Г.В. Авт. свид. СССР 1.069.820 (1984).
- Родоман В.Е., Черкашин М.И., Мисин В.М., Родоман Г.В., Андрюхин М.И. Авт. свид. СССР 1.103.398 (1984).
- 5. Савина С.А., Абеленцев В.И., Санин М.А. и др. Кукаленко С.С., Андрианова Н.И., Курганова Л.Б., Курилов В.И., Иваненко Л.В., Борисенок А.С., Черкашин М.И., Мисин В.М., Родоман В.Е. Авт. свид. СССР 1.444.982 (1988).
- 6. Черкашин М.И., Мисин В.М., Никулин С.С., Щербань Г.Т., Волков В.И., Головачев А.М., Кролевецкий, С.И., Герасимов Н.Д., Сладков А.П. Авт. свид. СССР 1.144.357 (1984).
- 7. С.С. Никулин, С.Л. Сидоров, Н.Н. Шаповалова, Л.Д. Кудрявцев, А.В. Молодыка, А.П. Гаршин, Ю.М. Наумова, В.С. Ненахов, И.В. Распопов, П.В. Образцов. Патент России 2.063.980 (1996).

- 8. С.С. Никулин, С.Л. Сидоров, Н.Н. Шаповалова, Л.Д. Кудрявцев, А.В. Молодыка, А.П. Гаршин, Ю.М. Наумова, В.С. Ненахов, И.В. Распопов, П.В. Образцов. Пат. России 2.064.939 (1996).
- 9. А.П. Гаршин, С.С. Никулин, Н.Н. Шаповалова, С.Л. Сидоров, Ю.М. Наумова, М.И. Черкашин, *Произв-во и использ. эластомеров*, 11, 2-6 (1994).
- А.П. Гаршин, С.С. Никулин, Ю.М. Наумова, А.А. Рыльков, Н.Н. Шаповалова, *Произв-во и использ. эластомеров*, 6, 14-18 (1995).
- 11. С.С. Никулин, С.Л. Сидоров, Н.Н. Шаповалова, Л.Д. Кудрявцев, А.В. Молодыка, А.П. Гаршин, Ю.М. Наумова, В.С. Ненахов, И.В. Распопов, П.В. Образцов. Пат. России 2.067.590 (1996).
- 12. С.С. Никулин, С.Л. Сидоров, Н.Н. Шаповалова, Л.Д. Кудрявцев, А.В. Молодыка, А.П. Гаршин, Ю.М. Наумова, В.С. Ненахов, И.В. Распопов, П.В. Образцов. Пат. России 2.067.591 (1996).
- 13. С.С. Никулин, С.Л. Сидоров, Н.Н. Шаповалова, Л.Д. Кудрявцев, А.В. Молодыка, А.П. Гаршин, Ю.М. Наумова, В.С. Ненахов, И.В. Распопов, П.В. Образцов, В.П. Смурыгина, М.И. Черкашин. Пат. России 2.067.592 (1996).
- 14. А.П. Гаршин, С.С. Никулин, Н.Н. Шаповалова, С.Л. Сидоров, Ю.М. Наумова, М.И. Черкашин, *Произв-во и использ. эластомеров*, 12, 9-14 (1994).
- 15. С.С. Никулин, В.Н. Вережников, В.М. Мисин, Т.Н. Пояркова, Сб. «Технология, сер. Конструкции из композиционных материалов», 3-4, 44-46 (1998).
- 16. В.Н. Вережников, С.С. Никулин, Т.Н. Пояркова, А.П. Гаршин, *Вести. Тамбовск. ун-та*, **2**, 1, 47-52 (1997).
- 17. С.С. Никулин, В.Н. Вережников, Т.Н. Пояркова, В.А. Данковцев, *Каучук и резина*, 5, 2-4 (2000).
- 18. S.S. Nikulin, V.N. Verezhnikov, V.M. Misin, T.N. Pojarkova, *Russ. Polym. News*, 7, 1, 1-6 (2002).
- 19. В.Н. Вережников, Т.Н. Пояркова, С.С. Никулин, Н.А. Курбатова, *Коллоид. журн.*, **62**, 1, 26-30 (2000).
- V.N. Verezhnikov, S.S. Nikulin, V.M. Misin, T.N. Pojarkova, *Russ. Polym. News*, 4, 4, 36-41 (1999).
- 21. В.Н. Вережников, С.С. Никулин, Т.Н. Пояркова, Г.Ю. Вострикова, *Журн. прикл. хим.*, **75**, 3, 472-475 (2002).
- 22. V.N. Verezhnikov, S.S. Nikulin, V.M. Misin, In: Essential Results in Chemical Physics and Physical Chemistry, Nova Sci. Publ. Inc., NY, (2005). Chapter 10, P 123-134.

- 23. А.П. Гаршин, С.С. Никулин, А.А. Рыльков, З.Д. Слукина, В.П. Смурыгина, Н.Н. Шаповалова, *Произв-во и использ. эластомеров*, 5, 8-10 (1996).
- 24. В.Н. Вережников, П.Е. Кашлинская, Т.Н. Пояркова, *Коллоид. журн.* 1991. Т. 53. № 5. С. 822-825.
- 25. П.Е. Кашлинская, В.Н. Вережников, Т.Н. Пояркова, *Журн. прикл. хим.*, 1991, т. 73, №1, С. 218-220..
- А.П. Гаршин, С.С. Никулин, З.Д. Слукина, Н.Н. Шаповалова, А.А. Рыльков, А.В. Гусев, Произв-во и использ. эластомеров, 9, 14-19 (1996).
- 27. С.С. Никулин, В.Н. Вережников, Т.Н. Пояркова, В.А. Данковцев, *Журн. прикл. хим.*, **73**, 5, 833-836 (2000).
- 28. В.Н. Вережников, С.С. Никулин, Т.Н. Пояркова, В.М. Мисин, *Журн. прикл. хим.*, 74, 7, 1191-1194 (2001).
- 29. С.С. Никулин, Т.Н. Пояркова, В.М. Мисин *Журн.* прикл. хим., **81**, 8, 382-1388 (2008).
- 30. Т.Н. Пояркова, С.С. Никулин, Ю.С. Бологова, В.М. Мисин. *Конденсир. среды и межфаз. границы,* **10**, 4, 261-265 (2008).
- Т.Н. Пояркова, С.С. Никулин, В.М. Мисин, С.В. Молодкин, *III Межд. конф. по коллоид. химии и физикохимич. механике* (Москва, июнь 24-28, 2008). Тр., Москва, 2008, С. 89.
- 32. С.С.Никулин, Т.Н. Пояркова, В.М. Мисин, *Журн.* прикл. хим., **84**, 5, 853-858 (2011).
- 33. С.С. Никулин, Т.Н. Пояркова, В.М. Мисин, *Журн. прикл. хим.*, 77, 6, 996-1000 (2004).
- 34. О.В. Куренкова, Г.В. Славинская, 11 Межд. симпоз. по сорбции и экстракции (Владивосток, Россия, 2009). Тезисы, Владивосток, 2009. С.59-60.
- 35. В.М. Мисин, С.С. Никулин, *Все материалы. Энцикло- педич. справочник*, 11, 36-45 (2007).
- V.M. Misin, S.S. Nikulin, In: Monomers, Oligomers, Polymers, Composites and Nanocomposites Research: Synthesis, Properties and Applications, Ed. By R.A. Pethrick at al., Nova Sci. Publ. Inc., NY, 2008. Chapter 21, P. 351-359.
- 37. S. Nikulin, V. Misin, *Chem. & Chemical Technol.*, **2**, 2, 135-140 (2008).
- 38. В.М. Мисин, С.С. Никулин Ред. Г.Е. Заиков «Горение, деструкция и стабилизация полимеров», изд-во НОТ, С.-Петербург, 2008, С. 371-401.

[©] В. М. Мисин – зав. лаб, Институт биохимической физики РАН, misin@sky.chph.ras.ru; С. С. Никулин - проф. каф. инженерной экологии и техногенной безопасности и кафедры ТОС и ВМС, Воронежский государственный университет инженерных технологий, nikulin.nikuli@yandex.ru; К. М. Дюмаев - член-корр. РАН, советник Всероссийского научно-исследовательского института лекарственных и ароматических растений РАСХН.