ПРОЦЕССЫ И АППАРАТЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

УДК 621.311

Т. В. Лопухова, Ю. Н. Зацаринная, Р. Н. Балобанов

ОСОБЕННОСТИ КОНСТРУКЦИИ ТРАНСФОРМАТОРОВ С ЭЛЕГАЗОВОЙ ИЗОЛЯЦИЕЙ

Ключевые слова: элегазовые трансформаторы, элегаз, система охлаждения, изоляция, конструкция.

В статье рассмотрены трансформаторы с элегазовой изоляцией и их конструкционные особенности. В заключение статье приводится вывод о преимуществах и недостатках элегазовых трансформаторов.

Keywords: gas-insulated transformers, insulating gas, cooling, insulation, construction.

The article describes the gas-insulated transformers and their design features. In conclusion, the paper presents conclusions about the advantages and disadvantages of gas-insulated transformers.

Трансформаторы с элегазовой изоляцией впервые были разработаны в США фирмой Вестингауз в конце 50-х годов. Силовые трансформаторы напряжением до 138 кВ и мощностью до 40 МВ - А были разработаны в 60-х годах [1]. В Европе элегазовые трансформаторы появились в середине 60-х годов. Однако дальнейшего развития ни в США, ни в Европе они не получили. В Японии первый трансформатор с элегазовой изоляцией напряжением 69 кВ и мощностью 3 МВ • А был изготовлен в 1969 г. Возрастающие требования пожаробезопасного оборудования и запрет применения негорючих изоляционных жидкостей на основе трихлордифенила в 1972 г., стимулировали развитие элегазовых трансформаторов (ЭТ). Их производство постоянно увеличивалось с началом поставок элегазовых трансформаторов напряжением 69 кВ мощностью 3 и 10 МВ-А для комплектных элегазовых подстанций в 1979 г. В 1991 г. элегазовые трансформаторы составляли свыше 8 % в общем производстве силовых трансформаторов.

Требования пожаробезопасности мощных высоковольтных подстанций, расположенных в жилых районах могут быть выполнены с установкой элегазовых трансформаторов. Такой трансформатор напряжением 275 кВ мощностью 300 МВ - А впервые был изготовлен в 1990 г.

Применение силовых трансформаторов с элегазовой изоляцией в России началось в 2012 г., компания ЗАО «ИСК «Союз-Сети» завершила работы по монтажу двух элегазовых трансформаторов 220/20 кВ мощностью по 63 МВА производства Toshiba (Япония) на строящейся подземной подстанции 220 кВ «Сколково»[2]. Работы были осуществлены под руководством представителей шеф-инженеров от фирмы Toshiba. Эти трансформаторы специально разработаны для использования на подземных энергообъектах. Ранее подобные автотрансформаторы в России не применялись.

Конструктивные особенности элегазовых трансформаторов можно описать следующим образом [3].

Система охлаждения

В таблице 1 приведены основные физические характеристики элегаза, воздуха и масла. Основным значимым для трансформатора различием элегаза,

Таблица 1- Физические свойства элегаза, воздуха и масла

Характеристики Элегаз Воздух дух кгс/см Плотность, кг/см³ 6,15 13,48 1,205 86 Вязкость, м³/с 0,153- 0,157- 0,188- 10"4 0,0249- 0,0116 0,156- 0,3	314
тики 0 1,2 0 5 Плотность, кг/см³ 6,15 13,48 1,205 86 Вязкость, м³/с 0,153- 10"4 0,157- 0,188- 10"4 0,00 Динамическая 0,0249- 0,0116 0,156- 0,3	314
Плотность, кг/см³ 6,15 13,48 1,205 86 Вязкость, м³/с 0,153- 10"4 0,157- 0,188- 10"4 0,00 Динамическая 0,0249- 0,0116 0,156- 0,3	314
$\frac{\text{кг/см}^3}{\text{Вязкость, м}^3/c}$ $0,153$ $13,48$ $1,203$ 80 $0,153$ $0,157$ $0,188$ $10"4$ $10~4$ $10"4$ $0,00$ Динамическая $0,0249$ $0,0116$ $0,156$ $0,3$	314
Вязкость, м ⁻ /с 10"4 10~4 10"4 0,0. Динамическая 0,0249- 0,0116 0,156- 0,3	63-
	~4
вязкость, M^3/c 10~4 - 10"4 10"4 10	
Тепловая проводимость, ккалДм·ч· ⁰ С 0,0115 0,0126 0,0221 0,1	06
Удельная теп- лоемкость, 0,144 0,145 0,246 0,4 <i>ккал</i> Дм·ч· ⁰ С	-52
Число Прандт- ля 0,669 0,669 0,735 48	32
Диэлектри- ческая по- стоянная	,3
Электрическая прочность (от- Около Около Около Носительно 1/2 1 1/4 масла)	l
Отношение теплоемкостей Около Около Около равных объё- мов Около 1/200 1/140	l
Отношение теплопроводности для Около Около Потоков с одинаковой скоростью	l
Горючесть негорючее гор	
Разлагаемость Не разлагается в присут- Ок	ис-
ствии кислорода ляе	теа

воздуха и масла является теплопередающая способность на единицу объема. Например, при рабочем давлении газа 1,2 кгс/см²теплопередающая способность элегаза составляет 1 /200 от масла (плотность 1/65, удельная теплоемкость 1/3). Для обеспечения требуемого отвода тепла в элегазовых трансформаторах должна быть более совершенная система охлаждения. Например, охлаждающие каналы в обмотках должны увеличить циркуляцию газа, а изоляция провода должна быть выполнена из высокотемпературного изоляционного материала, такого как PET (полиэтилен терефталат) или PPS (полиэтилен сульфид).

Изоляция

В элегазовом трансформаторе для витковой изоляции пленочный материал является более подходящим, чем бумага по соображениям импульсной прочности. Наиболее подходящим материалом являются РЕТ и PPS, в виде пленки, которая имеет отличные теплопередающие свойства. Что касается типа обмоток, то переплетенная обмотка применяется при напряжении 66 кВ и выше. В равномерном поле при давлении элегаза 1,2 кгс/см² его электрическая прочность почти такая же как и трансформаторного масла. Однако пробивное напряжение газовой изоляции зависит от максимальной напряженности поля. Максимальная напряженность, которая может быть допущена в масле, недопустима в элегазе. Поэтому изоляция в элегазовом трансформаторе требует определенного усовершенствования но сравнению с масляными трансформаторами. Чтобы уменьшить напряжение на газовых промежутках в системе газ — твердая изоляция применяются материалы с малой диэлектрической постоянной, а в некоторых случаях применяются полые дистанцирующие детали для уменьшения их диэлектрической постоянной [4].

Давление газа. Для повышения электрической прочности и улучшения охлаждения желательно высокое давление элегаза. Однако большинство трансформаторов имеют бак не простой цилиндрической формы, а иной формы, и поэтому экономически невыгодно изготавливать их рассчитанными на высокое давление. Поэтому в большинстве элегазовых трансформаторов применяется давление 2 кгс/см² при максимальной рабочей температуре. И все же, элегазовые трансформаторы напряжением 275 кВ имеют максимальное рабочее давление несколько выше. Это сделано для повышения электрической прочности, что дало возможность иметь трансформатор в пределах транспортных габаритов.

Переключающее устройство РПН

В контакторе переключающего устройства применены вакуумные камеры во избежание попадания в элегаз продуктов горения дуги. В элегазовых трансформаторах отсутствует очистка элегаза, и его электрическая прочность может быть снижена металлическими частицами, образующимися при механическом износе контактов. Поэтому в избирателе вместо скользящих контактов применены контакты катящегося типа. Кроме того, сочленения движущихся частей имеют безмасляную структуру со специальной обработкой поверхностей. Таким

образом, в элегазовых трансформаторах применяется совершенно иное переключающее устройство, нежели в масляных трансформаторах.

В Японии многие подстанции сверхвысокого напряжения расположены в густонаселенных городских районах. Чтобы удовлетворить очень жестким требованиям, предъявляемым к трансформаторам для таких подстанций были разработаны три варианта элегазовых трансформаторов напряжением 275 кВ и мощностью 300 МВ-А, показанные на рис. 1 и в таблице 2. С увеличением мощности решить вопросы охлаждения только элегазом стало практически невозможным. Было принято охлаждение с помощью жидкости перфторуглерод (РFC) для всех трех типов трансформаторов [5].

В варианте А броневого типа поток перфторуглерода направлен сверху обмотки вдоль катушек. Конструкция обмоток, включая изоляцию, почти такая же как в масляном трансформаторе.

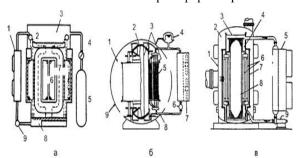


Рис. 1 - Эскизы строения элегазовых трансформаторов большой мощности в Японии. Тип А (а): 1 — охладитель; 2 — распределитель охлаждающей жидкости; 3 — смесь элегаза и паров охлаждающей жидкости; 4 — компрессор; 5 — баллон с газом; 6 — магнитопровод; 7— обмотка; 8 — охлаждающая жидкость (РГС); 9— насос. Тип В (б): 1 — элегаз; 2 — магнитопровод; 3 — охлаждающая панель; 4 — регулятор давления; 5 листовая обмотка; 6 — насос; 7— теплообменник; 8 — возврат охладителя; 9 — бак. Тип С (в): 1 — бак; 2— элегаз; 3— распределительная мембрана; 4— охлаждающая жидкость (РГС); 5 охладитель; 6— обмотка; 7— изоляционный цилиндр (стенка сосуда); 8— магнитопровод; 9 насос

При смешивании элегаза и паров перфторуглерода вариации давления смеси с изменением температуры увеличиваются. Регулятор давления поддерживает величину давления на уровне 2 кгс/см² во всем диапазоне температур. Форма бака почти та же, как для маслонаполненного трансформатора броневого типа.

В варианте В применены листовые обмотки из алюминия с использованием барьеров из листов РЕТ. Обмотки охлаждаются жидкостью перфторуглерода, циркулирующей в панелях цилиндрической формы листовой обмотки. Жидкость перфторуглерода полностью изолирована от элегаза. Цилиндрической формы бак рассчитан на максимальное давление 4 кгс/см².

Таблица 2 - Элегазовые трансформаторы большой мощности в Японии (рис. 1)

Тип	A	В	С
	С потоком	С раздель-	С запол-
	охлаждаю-	ным охлаж-	нением
	щей жидко-	дением	жидко-
	сти сверху	(рис. 1, б)	стью
	вниз	u , ,	внутрен-
	(рис.1, а)		него бака
	d,.,		с актив-
			ной ча-
			стью
			(рис. 1, в)
Тип	Броневой	Стержневой	Стержне-
транс-	Bponeson	с листовы-	вой с дис-
форма-		ми обмот-	ковыми
тора и		ками	обмотка-
обмотки		Kumi	ми
Изоля-	Элегаз +	Элегаз	Элегаз
-кпостч	перфторуг-	(4 кгс/см ²).	(3,5)
ции	лерод	Витковая	кгс/см ²).
	(2 кгс/см ²).	изоляция —	Изоляция
	Витковая	синтетиче-	обмотки
	изоляция —	ская пленка	— PFC.
	синтетиче-	ская пленка	Витковая
	ская пленка		
	ская пленка		изоляция — синте-
			тическая
Охлаж-	Принични	Полити	пленка
	Принуди-	Принуди-	Принуди-
дение	тельная	тельная	тельная
	циркуляция	циркуляция	циркуля-
	жидкости	жидкости	ция жид-
	пер-	перфторуг-	кости
	фторугле-	лерода в	перфто-
	рода в ох-	охлади-	руглерода
	ладитель-	тельных	в изоля-
	ных кана-	панелях в	ционном
	лах между	обмотке	отсеке
	катушками		(магнито-
			провод и
			обмотки в
			перфто-
			руглеро-
Пото	Though	Thortes	де)
Пара-	Трехфазный	Трехфаз-	Трехфаз-
метры	275 κB, 300	ный, 275	ный, 275
транс-	МВ-А с	кВ, 300 МВ	кВ, 250
форма-	РПН	• А, с регу-	МВ-А с
тора		лировоч-	РПН
		ным транс-	
		форматором	
		в нейтрали	

В варианте С обмотки и магнитопровод залиты жидкостью перфторуглерода. Жидкость в этом

варианте является как изолятором, так и теплоносителем. Вся активная часть и жидкость находятся в изоляционном цилиндрическом баке. Пространство между стенками этого бака и стенками стального бака заполнено элегазом с максимальным давлением 3 кгс/см².Сверху изоляционный бак закрыт выравнивающей давление разделительной мембраной.

В заключение можно сделать выводы о следующих преимуществах и недостатке элегазовых трансформаторов. Первым и основным преимуществом элегазовых трансформаторов является их полная пожаробезопасность. Кроме того, они имеют следующие преимущества, но сравнению с маслонаполненными трансформаторами, устанавливаемыми в закрытых помещениях и под землей:

- 1. Отпадает необходимость в противопожарном оборудовании и аварийной емкости для масла.
- 2. Отпадает необходимость в защитном ограждении (стенках) для защиты другого оборудования.
- 3. Охладители могут быть установлены значительно выше самого трансформатора.
- 4. Уменьшенный вес благодаря отсутствию масла
- 5. Сниженный уровень шума по сравнению с маслонаполненными трансформаторами.

Эти преимущества позволяют уменьшить размеры подстанции или помещения и снизить стоимость.

Недостатком является меньшее значение тепловой постоянной времени по сравнению с маслонаполненными трансформаторами. Поэтому допустимая длительность перегрузок меньше.

Литература

- 1. Аракелян В.Г. «Физическая химия элегазового электротехнического оборудования». М.: Издательство МЭИ, 2001. 300 с
- 2. (http://www.sdelanounas.ru/blogs/20414/)
- 3. (http://forca.ru/stati/podstancii/transformator-s-elegazovoy-izolyaciey-toshiba.html).
- 4. Балобанов Р.Н., Лопухова Т.В., Зацаринная Ю.Н. Влияние времени эксплуатации элегазового оборудования на состояние изоляции/ Р.Н. Балобанов, Т.В. Лопухова, Ю.Н. Зацаринная// Вестник Казанского технологического университета. 2012. №16 С. 122—124.
- 5. Макаров В.Г. Выбор трансформатора в трехфазном магнито-транзисторном инверторе/ В.Г Макаров // Вестник Казанского технологического университета. -2011.-N217 С. 50–54.

[©] Т. В. Лопухова - канд. пед. наук, проф. каф. электрических станций КГЭУ, lopuhovatv@mail.ru; Ю. Н. Зацаринная - - канд. тех. наук, доц. той же кафедры, доц. каф. автоматизированных систем сбора и обработки информации КНИТУ, zac_jul@mail.ru; Р. Н. Балобанов – магистрант КГЭУ.