Ю. С. Карасева, Е. Н. Черезова

СУЛЬФИДИРОВАНИЕ ЗАМЕЩЕННЫХ ФЕНОЛОВ И ОЛЕФИНОВ ЭЛЕМЕНТНОЙ СЕРОЙ КАК ПУТЬ СИНТЕЗА ДОБАВОК БИФУНКЦИОНАЛЬНОГО НАЗНАЧЕНИЯ ДЛЯ ПОЛИМЕРНЫХ МАТЕРИАЛОВ

Ключевые слова: синтез, замещенные фенолы, сульфиды замещенных фенолов, дициклопентадиен, полисульфидные олигомеры.

Осуществлен синтез полисульфидных олигомерных добавок сульфидированием замещенных фенолов и дициклопентадиена элементной серой.

Key words: synthesis, hindered phenols, hindered phenols' sulfides, dicyclopentadiene, polysulfide oligomers.

The synthesis of polysulfide oligomer additives by the reaction of sulphidation of hindered phenols and dicyclopentadiene with elemental sulfur was carried out.

Введение

Сера относится к весьма распространенным в природе химическим элементам. В частности, сера и ее органические соединения содержатся в нефти, природном газе. Увеличение объемов добычи нефти привело к тому, что производство газовой серы в настоящее время существенно превышает ее квалифицированное потребление. Это определяет актуальность исследований, направленных на создание наукоемких продуктов на базе элементной серы.

Элементная сера в настоящее время нашла применение в органическом синтезе, резиновой и шинной промышленности. Развитие последнего направления связано с использованием серы в качестве вулканизующего агента при производстве большинства резин. Как правило, для получения качественных резиновых изделий в состав резиновой смеси вводят системы с повышенным содержанием серы, что приводит к ее «выцветанию» на поверхность изделий. Следствием этого является загрязнение окружающей среды [1, 2]. В мировой практике проблему «выцветания» серы предлагается решать путем ее замены в рецептурах резин на полимерную и сополимерную серу, которые не только в существенно меньшей степени «выцветают» на поверхности резин, но и улучшают ряд физико-механических характеристик вулканизатов [3, 4].

В настоящее время разработаны методы получения полисульфидных олигомеров (ПСО) HS-R-SH по реакции сополимеризации серы с олефинами [5, 6, 7, 8, 9]. Условия реакции определяются используемым олефином.

Отметим, что атомы сульфидной серы, содержащиеся в составе ПСО, потенциально способны выполнять функцию вторичных антиоксидантов, но их стабилизирующая способность невысока [10]. Повышение стабилизирующей способности ПСО может быть обеспечено введением в состав молекул ПСО фрагментов, способных более эффективно тормозить окисление полимеров, например, пространственно-затрудненных фенолов (ПЗФ). Это может быть обеспечено взаимодействием ПЗФсоединений с концевыми гидросульфидными группами ПСО [11], либо использованием смесевых добавок ПСО с антиоксидантами класса фенолов. И в

том, и в другом случае можно ожидать проявления синергизма антиокислительного действия [12].

Опираясь на выше приведенные факты, на наш взгляд, было рациональным получение полисульфидных добавок с использованием элементной серы, которые одновременно выполняли бы функции вулканизующего агента и стабилизатора для резин.

Ранее было показано, что эффективными антиоксидантами являются фенольные стабилизаторы с сульфидными заместителями [13] и разработан бис(3,5-ди-трет-бутил-4синтеза гидроксифенил) полисульфида по реакции серы с 2,6(ди-трет-бутил)фенолом (2,6-ДТБФ). Основными условиями для реализации данного процесса в расплаве авторами работы [14] было указано на необходимость использования эквимольного количества по отношению к 2,6-ДТБФ гидроксида калия, в работе [15] предложено проводить процесс в полярном растворителе. Однако в обоих случаях, несмотря на 5-10-кратный избыток серы в реакции, не представлялось возможным завершение процесса с высокой конверсией 2,6-ДТБФ.

Исходя из выше указанных обстоятельств, казалось целесообразным разработать синтез добавки бифункционального назначения путем объединения процесса сульфидирования замещенного фенола и реакции сополимеризации непредельного углеводорода с серой в одном технологическом процессе.

Целью данной работы является разработка на основе серы технологичного процесса получения бифункциональной добавки, включающей ПСО и серосодержащий антиоксидант с ПЗФ-фрагментом [16].

Экспериментальная часть

Взаимодействие ди(трет-бутил) фенола (ДТБФ) с серой. В круглодонную колбу, снабженную обратным холодильником, мешалкой, термометром и трубкой для подачи газа помещали ДТБФ, серу, диметилформамид (ДМФА) и катализатор. Реакцию вели в течение 1,5 - 10 часов при температуре 140 °С с барботированием через реакционную систему инертного газа (азот). После окончания реакции кубовый продукт охлаждали до комнатной температуры и оставляли на сутки, в течение которых непрореагировавшая сера выпадала в осадок. Выпавший осадок отфильтровывали, промывали ДМФА, который затем отгоняли под вакуумом.

Получение бифункциональной добавки. В круглодонную колбу, снабженную обратным холодильником, мешалкой,

термометром и трубкой для подачи газа помещали ДТБФ, серу, ДМФА и катализатор. Реакцию вели в течение 1,5 часов при 140° С при перемешивании и барботировании азота через реакционную массу. По истечении 1,5 часов, предварительно остудив реакционную смесь до 50° С, добавляли ДЦПД в количестве, рассчитанном на остаточное количество серы, и продолжали реакцию при температуре $130 - 134^{\circ}$ С в течение 3 часов. После окончания синтеза из реакционной массы отгоняли растворитель под вакуумом водоструйного насоса ($T = 60^{\circ}$ C, 7 мм.рт.ст.).

Взаимодействие дициклопентадиена (ДЦПД) с серой проводили по методике [17].

рН определяли с помощью рН-метра рН 150 МИ «Измерительная техника» по методике [18].

Обще количество серы определяли с помощью универсального элементного анализатора CHNS-O Elementar Vario El cube. Газ-носитель гелий 250 мл/мин.

Определение количества HS-групп проводили по ГОСТ 12812-80.

ЯМР-спектры снимали на спектрометре «Gemini -200». Рабочая частота прибора -200 Гц для ядер 1 Н. Образцы исследовались в растворе дейтеробензола при температуре 25° С [19].

Результаты и их обсуждение

На первом этапе работы были оптимизированы условия взаимодействия ДТБФ с серой. В качестве исходных реагентов использованы 2,4- и 2,6-ДТБФ. Отметим, что процесс сульфидирования 2,4-замещенных фенолов серой в литературе не освещен.

Взаимодействие ДТБФ с элементной серой осуществляли в ДМФА, учитывая тот факт, что проведение процесса в среде полярных растворителей ускоряет процесс вследствие возрастания нуклеофильности фенола.

Анализ литературных данных показал, что основность среды может быть увеличена путем применения совместно с полярным растворителем гидроксида щелочного металла [20]. В ходе данного исследования предложено использовать в качестве оснований промышленно производимые третичные

амины ниже приведенной структуры - фенольные основания Манниха (ОМ):

Выбор данных соединений обусловлен не только высокой нуклеофильностью ОМ, но и возможностью исключения стадии отмывки продукта от ОМ, поскольку они являются замещенными фенолами и могут выполнять функцию антиоксидантов.

Согласно полученным данным (табл. 1), введение в ДМФА ОМ-2 приводит к повышению основностью среды «ДМФА-ОМ» сравнимой с основностью среды «ДМФА-КОН».

Таблица 1 – Данные рН сред

Вещест-	ДМФА	OM-2	ДМФА:	ДМФА:
во			OM-2	КОН
			(1,0:0,5	(1,0:0,5
			моль)	моль)
pН	7,5	8,0	10,9	11,4

Проведенные ранее квантово-химические расчеты [21] показали, что при сульфидировании ДТБФ элементной серой более реакционноспособным является 2,6-ДТБФ по сравнению с 2,4-ДТБФ, что было подтверждено экспериментальными данными.

Согласно полученным в ходе работы результатам, 2,4-ДТБФ в отличие от 2,6-ДТБФ не вступил во взаимодействие с элементной серой в присутствии каталитических количеств $OM_{\scriptscriptstyle T}$ (табл. 2, опыт 1, 2).

Таблица 2 - Состав реакционной смеси и условия проведения реакции взаимодействия ДТБФ с серой (T=140 °C, ДМФА, барботирование азота)

№	ДТБФ	, моль	Сера Осно		снование	Время	Эл. ана-	Конверсия
опыта	2,6- ДТБФ	2,4- ДТБФ	(S ₈), моль	Тип	Количество, моль (%мас. от 2,6-ДТБФ)	реакции, мин	лиз S, %	ДТБФ*, %
1	-	1,0	1,45	$OM_{\scriptscriptstyle m T}$	0,008 (1,0)	90	<1,0	-
2	-	1,0	1,45	$OM_{\scriptscriptstyle m T}$	0,04 (5,0)	90	<1,0	-
3	-	1,0	1,45	KOH	0,10 (2,7)	90	1,0	-
4	-	1,0	1,45	KOH	0,10 (2,7)	180	1,5	-
5	-	1,0	1,45	КОН	0,19 (5,0)	90	5,0	-
6	-	1,0	1,45	KOH	1,0 (27,0)	600	16,2	75,3
7	1,0	_	1,45	-	-	360	20,5	95,3
8	1,0	-	1,45	$OM_{\scriptscriptstyle \mathrm{T}}$	0,004 (0,5)	180	13,6	63,1
9	1,0	_	1,45	$OM_{\scriptscriptstyle m T}$	0,008 (1,0)	90	20,9	96,8
10	1,0	_	1,45	$OM_{\scriptscriptstyle m T}$	0,008 (1,0)	120	21,0	97,3
11	1,0	_	1,45	$OM_{\scriptscriptstyle \mathrm{T}}$	0,008 (1,0)	180	21,3	100,0
12	1,0	-	1,45	OM-2	0,008 (1,0)	210	21,0	97,4
13	1,0	-	1,45	OM-2	0,008 (1,0)	180	20,5	96,4
14	1,0	-	1,45	OM-1	0,008 (1,0)	180	20,0	96,1

^{*}Конверсия ДТБФ определялась методом спектроскопии ЯМР ¹Н путем сравнения интегральных интенсивностей пиков, относящихся к протонам, находящимся в *мета-* и *пара-* положениях арильного кольца.

При замене $OM_{\scriptscriptstyle T}$ на КОН (2,7 %мас. от 2,4-ДТБФ) также не удалось получить бис(3,5-ди-*трем*-бутил-2-гидроксифенил)полисульфид (табл. 2, опыт 3, 4). Лишь при увеличении количества КОН до эквимольного по отношению к 2,4-ДТБФ и времени синтеза до 10 часов была достигнута конверсия 2,4-ДТБФ 75 % (табл. 2, опыт 6).

Вследствие низкой реакционной способности 2,4-ДТБФ в реакции сульфидирования серой, получение бифункциональной добавки осуществлено с использованием 2,6-ДТБФ. В качестве олефина использован ДЦПД, поскольку ПСО, полученные на

t-Bu
$$_{1}$$
 $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_$

Этот процесс носит обратимый характер, причиной которого является частичная ионизация сероводорода с образованием гидросульфиданионов. Проведение реакции с барботажем через реакционную массу сухого азота обеспечивает удаление сероводорода и смещение равновесия в сторону образования продуктов.

Избыточно взятая сера далее взаимодействовала с добавляемым в реакционную систему ДЦПД:

его основе зарекомендовали себя хорошими вулканизующими агентами [22] и могут быть получены в достаточно мягких условиях без участия катализатора.

Реакцию вели в две стадии. На первой стадии происходило взаимодействие 2,6-ДТБФ с серой с образованием полисульфидного стабилизатора с ПЗФ-фрагментами при оптимизированных условиях (ДМФА, подача азота со скоростью 100 л/час, T=140 °C, $\tau=90$ мин). Реакцию вели в 10-кратном избытке серы (схема 1).

$$n$$
 + $n/(2-4)$ S_8 $\xrightarrow{130-134}$ °C HS S_x Н Схема 2

Варьирование соотношения исходных 2,6-ДТБФ и ДЦПД позволяет получать продукты с различным содержанием соолигомера ДЦПД- S_x и ПЗФ- S_y . Введение в реакционную систему на второй стадии Тиурама Д сопровождается понижением степени сульфидности ПСО [17]. Физико-химические характеристики полученных добавок приведены в табл. 3.

Таблица 3 - Условные обозначения и основные физико-химические характеристики изучаемых добавок

Условное обозначение	Реагенты, моль				Среднее число атомов серы в полисульфидном фрагменте, мас.%.		Общее содержа- ние серы,	Содержа- ние HS- групп,	Верхняя граница ММ
	S_8	2,6-ДТБФ	$OM_{\scriptscriptstyle T}$	ДЦПД	X	y	мас.%.	мас.%.	
ДЦПД-S ₄ / ПЗФ-S _y (90/10)	0,12	0,03	0,001	0,23	4	2÷4	45,3	0,49	6000
ДЦПД-S ₄ / ПЗФ-S _y (80/20)	0,12	0,06	0,002	0,20	4	2÷4	44,5	0,57	5000
ДЦПД-S ₄ / ПЗФ-S _y (70/30)	0,12	0,09	0,003	0,17	4	2÷4	43,1	0,61	3000
ДЦПД-S ₂ / ПЗФ-S _y (90/10)	0,08	0,03	0,001	0,30	2	2÷4	33,2	0,12	10000
ДЦПД-S ₄	0,12	1	-	0,23	4	-	49,3	0,90	6000
ДЦПД-S ₂	0,08	-	-	0,30	2	-	38,2	0,65	10000
Π 3Ф- S_y	1,45	1,0	0,008	-	-	2÷4	20,6	0,13	600

Наряду с реакцией сополимеризации серы с ДЦПД протекает, по-видимому, взаимодействие образовавшегося Π 3 Φ - S_v с концевыми гидросуль-

фидными группами соолигомера ДЦПД- S_x (схема 3).

Схема 3

Косвенным подтверждением данного положения являются данные о понижении количества SH-групп (табл. 3) в сравнении с сополимером ДЦПД и серы, получаемым по схеме 2.

Проведено исследование стабилизирующей и вулканизующей способности синтезированных добавок. Было установлено, что замена серы на синтезированные бифункциональные добавки приводит к получению эластичных вулканизатов при сохранении их прочностных характеристик на уровне контроля, обеспечивая дополнительную стабилизирующую функцию [23].

Выводы

- 1. Проведена оптимизация синтеза бис(3,5-дитрет-бутил-2-гидроксифенил)полисульфида. Выявлены условия проведения процесса сульфидирования 2,6-ди-трет-бутифенола элементной серой со 100 % конверсией.
- 2. Установлено, что процесс взаимодействия 2,4-ди-*трет*-бутилфенола с серой протекает в условиях щелочного катализа при эквимольном к 2,4-ДТБФ количестве КОН.
- 3. Отработан однореакторный метод синтеза бифункциональной полисульфидной добавки по реакции 2,6-ди-*трет*-бутилфенола с серой и дициклопентадиеном, позволяющий регулировать степень сульфидности и количество пространственнозатрудненной фенольной составляющей.

Литература

- 1 Охотина Н.А. *Сырье и материалы для резиновой промышленности: тексты лекций.* Казань: Казан. гос. технол. ун-т., 2005. 116 с.
- 2 Гофманн В. *Вулканизация и вулканизующие агенты. Перевод с немецкого. Под ред. И.Я. Поддубного.* Ленинградское отделение: Химия, 1968. 464 с.
- 3 Аверко-Антонович Л.А., Аверко-Антонович И.Ю. Полимеры и сополимеры серы в качестве модификаторов и вулканизующих агентов для каучуков. М.: ЦНИИТЭнефтехим, 1994. 72 с.
- 4 Аверко-Антонович И.Ю., Аверко-Антонович Л.А., Кирпичников П.А. Синтез серосодержащих полимеров и их использование для модификации эластомеров. М: ЦНИИТЭнефтехим, 1992. 52 с.

- 5 Гонюх А.В. Автореф. дисс.... канд. хим. наук., Казанский гос. технолог. ун-т, Казань, 1992. 14 с.
- 6 Воронков М.Г., Дерягина Э.Н. *Журн. общей химии*, **71**, 12, С. 1941 1965 (2001).
- 7 Пат. США 2002/0016268 (2002).
- 8 Рылова М.В., Самуилов А.Я., Храпковский Г.М. и др. Вестник Казанского технологического университета, 1, С. 290 -295 (2002).
- 9 Карасева Ю.С., Башкатова Т.В., Черезова Е.Н., Хусаинов А.Д. *Вестник Казанского технологического университета*, 5, С. 57 62 (2006).
- 10 Эмануэль Н.М., Бучаченко А.Л. *Химическая физика* молекулярного разрушения в стабилизации полимеров. М.: Наука, 1982. 368 с.
- 11 Митрофанова С.Е., Гирфанова Э.Н., Аверко-Антонович И.Ю., Черезова Е.Н. *Журнал прикладной химии*, **79**, 1. С. 139-143 (2006).
- 12 Карпухина Г.В., Эмануэль Н.М. Докл. АН СССР, **276**, 5, С. 1163 1167 (1984).
- 13 Черезова Е.Н. Автореф. дисс.... докт. хим. наук, Казанский гос. технолог. ун-т, Казань, 2002. 36 с.
- 14 Пат. США 3835196 (1974).
- 15 Пат. РФ 2068410 (1996).
- 16 Крайнова Ю.С., Башкатова Т.В., Рылова М.В., Бухаров С.В., Хусаинов А.Д., Черезова Е.Н., Самуилов Я.Д. *Бутлеровские сообщения*, **6**, 2, С. 43 45 (2004).
- 17 Рылова М.В. Дис. ... канд. хим. наук, Казанский гос. технолог. ун-т, Казань, 2004. 153 с.
- 18 Крешков А.П. Основы аналитической химии. Теоретические основы. Качественный анализ. М.: Химия, 1970. 472 с.
- 19 Ионин Б.И., Ершов Б.А. ЯМР-спектроскопия в органической химии. Л.: Химия, 1967. 326 с.
- 20 Фролов Ю.Л., Гучик И.В., Шагун В.А., Ващенко А.В. *Журнал структурной химии*, **46**, 6, С. 1019 1024 (2005).
- 21 Карасева Ю.С., Самуилов А.Я., Черезова Е.Н. *Бутлеровские сообщения*, **29**, 3, С. 66-68 (2012).
- 22 Рылова М.В., Халикова Г.Р., Павельева Н.П., Самуилов Я.Д. Вестник Казанского технологического университета, 1, С. 329-332 (2003).
- 23 Карасева Ю.С., Черезова Е.Н., Хусаинов А.Д. Всероссийская молодежная научная школа «Химия и технология полимерных и композиционных материалов». Материалы конференции. Москва, 2013. С. 348.

[©] Ю. С. Карасева - мл. науч. сотр. каф. технологии синтетического каучука КНИТУ, karaseva_j@mail.ru; Е. Н. Черезова – д-р хим. наук, проф. той же кафедры, cherezove@rambler.ru.