ГИДРОДИНАМИКА, ТЕПЛО-И МАССООБМЕННЫЕ ПРОЦЕССЫ, ЭНЕРГЕТИКА

УДК 621.32

С. С. Амирова, И. А. Папинов, И. Т. Ахметшин, А. Г. Сахтимов

ЭНЕРГОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ В ГУП «ГЭТ»

Ключевые слова: освещение, модернизация, энергопотребление, эффективность.

Предложены принципы организации энергосберегающих мероприятий на примере государственного унитарного предприятия «Горэлектротранспорт»

Key words: lighting, modernization, energy consumption, efficiency.

The principles of organization of energy saving measures in the case of the state unitary enterprise "Gorelektrotransport"

В настоящее время В соответствии общемировой тенденцией, политика нашего государства направлена на эффективное использование энергоресурсов, TOM числе электроэнергии [1, 2].

Ярким примером реализации данных законодательных актов является разработанная и внедренная программа энергосберегающих мероприятий. Государственном Унитарном Предприятии «Горэлектротранспорт» Нижнекамск 2011 Энергосберегающие год). технологии организованы в области освещения (замена малоэффективных источников света на более экономичные).

В ГУП «ГЭТ» использовались в качестве рабочего и аварийного освещения люминесцентные лампы и ДРЛ. Однако, как показали наши расчеты альтернативная замена перечисленных ламп на более эффективные на много экономичнее [3, 4].

Оценка экономии при времени работы лампы 6 часов в день и 240 рабочих смен в год показывает целесообразность принятых нами энергосберегающих мероприятий.

В месяц:

 Π Р Π -400: 19*0,5кВт*6ч*240/12 = 1140 кВт/ч;

 Π Р Π -250: 29*0,32кВт*6ч*240/12 = 1113,6 кВт/ч;

ESL 6: 19*0,105кВт*6ч*240/12=239,4 кВт/ч;

ESL 6: 29*0.105кВт*6ч*240/12=365,4 кВт/ч.

Таблица 1 – Харастеристики ламп ДРЛ-400, ДРЛ-250, ESL 6 U17

Тип ламп	Кол-во (шт.)	Мощность
		одной лампы
		(Вт)
ДРЛ-400	19	500
ДРЛ-250	29	320
ESL 6 U17	48	105

Потребление энергии до замены составляло 2253,6 кВт/мес., потребление энергии после замены составило 604,8кВт/мес. Отсюда, экономия

электроэнергии от замены ламп составила 2253,6 κ Bт/мес. – 604,8 κ Bт/мес. = 1648,8 κ Bт/месяц.

Таблица 2 – Потребление и экономия электроэнергии

Тариф (руб.)	Экономия	Потребление
	электроэнергии (кВт/месяц)	энергии в месяц (кВт/ч)
2,9	900,6	1140
2,9	748,6	1113,6
2,9	1648,8	604,8

Расчет энергосберегающего эффекта от замены светильников ПКН-500 в здании АБК на светодиодные светильники L-banner 24 приводиться с учетом времени работы в зимнее и летнее время.

Расчет потребления энергии для светодиодного светильника (кВт):

22*0,03*12*365/2=1445,4 - в зимнее время;

22*0,03*6*365/2=722,7 - в летнее время.

Расчет для светильника ПКН (кВт):

22*025*12*365/2 = 12045 - в зимнее время;

22*0,25*6*365/2=6022,5 - в летнее время.

Расчет экономии электроэнергии (кВт/год):

 $P_{n} - P_{cc}$ = 12045-1445,4 = 10599,6 - зимнее время;

 $P_n - P_{cc}$ = 6022,5-722,7 = 5299,8 - летнее время.

Общее потребление электроэнергии (кВт/год):

10599,6+5299,8=15899,4.

Экономия электроэнергии в денежном выражении (руб/год):

15899,4*2,9 = 46108,26

Расчет экономической эффективности по замене светильника ARS/R на L-office-25.

Потребляемая мощность для ARS/R:

10*0,08*12*240=2304 кВт в год.

Потребляемая мощность для L-office-25 с детектором движения:

10*0,032*6*240=460,8кВт в год. Экономия электроэнергии в год (кВт): 2304-460,8=1843,2 Экономия электроэнергии в год (руб.): 1843,2*2,9=5345,28 (табл.5).

Таблица 3 – Сравнение ламп до и после замены

Тип светильн ика	Кол- во (шт.)	Мощность светильника в месяц (Вт)	Потребляемая ЭЭ в год летнее время (кВт)
ПКН- 500	22	250	6022,5
Lbanner2	22	30	722,7

Таблица 4 — Экономия от замены светильников ПКН на Lbanner24

Потребляе-	Эконо-	Экономия	Эконо-
мая ЭЭ в год	мия ЭЭ в	ЭЭ в	мия ЭЭ в
зимнее время	летние	зимний	год
(кВт)	месяцы	месяц	(руб.)
12045 1445,4	5299,8	10599,6	46108,26

Таблица 5 – Экономия от замены светильника ARS/R на L-office-25

Экономия ЭЭ кВт в год	Экономия ЭЭ в рублях	Потребление энергии в год
		(кВт)
1843,2	5345,28	2304
1045,2	3343,26	460,8

Выводы

- 1. Наибольшая экономия электроэнергии имеет место при использовании энергосберегающих ламп и светильников.
- 2. Полученные результаты согласуются с мнениями авторов [3,4], проводивших исследование в области энергосберегающих технологий.

Литература

- 1. Федеральный закон от 23.11.2009 N 261-ФЗ «Об энергосбережении и повышении энергетической эффективности»
- 2. Шинкевич М.В., Берман С.С. О роли энергоресурсосберегающих технологий в инновационном развитии России. //Вестник Казанского технол. ун-та. 2011. №1. С.193-199.
- 3. Битиев А.В.Экономия электроэнергии в осветительных сетях на Раменской насосной станции// Электроснабжение №8 2010. с.30.
- 4. Морозов А.Г. Проблемы освещения промышленных зданий. //Вестник Казанского технол. ун-та. 2010. 84. 132-135.

[©] С. С. Амирова – д.т.н., проф. каф. электротехники и энергообеспечения предприятий НХТИ КНИТУ, romanova_rg@mail.ru; И. А. Папинов – зам. нач. службы энергохозяйства по контактной сети ГУП «Горэлектротранспорт»; А. Г. Сахтимов – нач. участка технического осмотра цеха ремонта и обслуживания подвижного состава ГУП «Горэлектротранспорт»; И. Т. Ахметшин – ст. мастер ООО «Мекбар».