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It was proposed the selfavoiding random walks statistics for polymeric similar stars in diluted and concentrated solutions. 

On a basis of the proposed statistics the equilibrium thermodynamical properties (namely, volume, pressure, free energy) of the 
conformational state of polymeric stars and their transformation under the action of external forces have been described. It were 
determined the elastic properties (Yung’s modulus and modulus of shearing) of the conformational volume of polymeric stars and also 
obtained the expressions for the main forces and for the deformation work. The dynamical properties of polymeric stars, in particular 
their characteristic times of translational and rotational motions, on a basis of which the coefficients of diffusion and elastic 
component of a viscosity determined have been studied. In concentrated solutions the all thermodynamic and dynamical properties 
expressed not only as the functions on a length and on a number of rays, but also on the concentration of the polymeric stars. 

 
Ключевые слова: статистика случайных блужданий без самопересечения, полимерные звезды, разбавленные и 

концентрированные растворы, вязкость. 
 

 Предложена статистика случайных блужданий без самопересечения для полимераналогичных звезд в разбавленных 
и концентрированных растворах. На основе предложенной статистики были описаны равновесные термодинамические 
свойства (а именно, объем, давление, свободная энергия) конформационного состояния полимерных звезд и их 
трансформация под действием внешних сил. Определены упругие свойства (модуль Юнга и модуль сдвига) 
конформационного объема полимерных звезд, а также получены выражения для основных сил и для работы деформации. 
Изучены динамические свойства полимерных звезд, в частности, их характерные времена поступательного и 
вращательного движения, на основании которых определены коэффициенты диффузии и упругий компонент вязкости. В 
концентрированных растворах все термодинамические и динамические свойства выражаются не только в качестве 
функции длины и количества лучей, но также концентрации полимерных звезд. 
 

1. Introduction 
 

Polymeric stars attract the attention not only 
due to the own technological properties [13], which 
can be varied by a length N of the rays and by their 
number s, but also as the complicated and interesting 
object of the statistical physics of polymers. 

Experimental data concerning to the properties 
of the polymeric stars are not numerous [47] and 
doesn’t give the sufficient welldefined picture. In 
particular, an investigation of the lowangle scattering 
of the neutrons [5, 6] for the diluted solutions of the 
starlike polybutadienes with 3, 4, 8 and 12 rays, one 
among which is deuterated, points on the fact, that the 
gyration radius of the tagged ray is increased at the 
number of the rays growing, but at this in diluted 
solutions the gyration radius is more, than in a melt. 

Rheological investigations [7] of the regular 
polystyrene starts which are differed by a number of the 
rays (6, 12 and 22) and by the structure of the branching 
center (one or two covalently connected molecules of 
fullerene) also give the contradictory results: the 
characteristic viscosity of their solutions in chloroform 
is weakly increased at the molar mass of the star 
growing (with index   = 0,2 in MKH equation 

   M ), whereas it is decreased in 

tetrahydrofurane, in other words, has the negative index 
  = 0.06. 

Theoretical analysis of the polymeric stars in 
DaudCotton’s model [8], which considered them as 
spherical polymeric brushes in quasiplate 
approximation [912] leads to the dependence of the 

conformational radius sR  of polymeric star on a number 

of rays s and their length N in a form (d  is 
dimensionality of a space): 
 

)2/(1)2/(3  dd
s saNR ,   (1) 

 
The expression (1) has an essential lack: at s = 

2, that is, under condition of the polymeric star 
degeneracy into the linear chain by 2N length, it 
wrongly illustrates of this situation. 

Besides, the experimental value of the socalled 

branching index g R , determining by ratio 

 
22
fssR RRg  ,    (2) 

in which R fs  is the conformational radius of the linear 

polymeric chain containing as same as the star of sN 
links, 
 

)2/(3)(  d
fs sNaR ,   (3) 

is disagreed with the theoretical values Rg , 

calculated accordingly to (1)(3). 
In statistical physics like to the linear chains for 

polymeric stars two main tasks are solved. First is the 
estimation of a number of allowed configurations L with 

the calculation of indexes   and s  in the scaling 

expressions by following type [13]: 
 

1 NzL N     (4) 
for linear chain and 
 

1 sNzL sN
s


    (5) 

for the star. 
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In expressions (4) and (5) z is not strictly 
determined; at the scaling approach the effective 
coordination number of dmeasured lattice, parameters 

  and s  are assumed as universal scaling indexes. 

For linear chain at d = 3 the value   = 1,1596 

  0,002 was obtained [14] using the method of a group 

of the field theory renormalization. Index s  for 

polymeric star calculating by several methods including 
the groups of the field theory renormalization [1518], 
methods of molecular dynamics [1920] and 
MonteCarlo’s method [2123] is sharply decreased at 
the s growing, taking more negative values even at s > 8 
(for example, at s = 32 an estimation with the use of 
MonteCarlo’s method [23] gives the value 

s 29); this prejudices the universality of this 

scaling index. 

Theoretical calculation of the L and L s  in 

statistics of the selfavoiding random walks (SARW) is 
represented in the next paper of this collection book. 
Here let’s consider the second main task, which consists 
in the estimation of the distribution function of the end 
of a chain from its beginning. 

More often the distribution function P(N) of the 
distance r between the ends of the linear chain by the N 
length is written in the scaling form [2425]: 
 

)/()( f
d

f RrRNP  ,   (6) 

In which R f  is the conformational radius of 

Flory 
 

)2/(3  d
f aNR     (7) 

Function )/( fRr  represented by two 

asymptotes: 
 xx )(  at х << 1  (8) 

  xx  exp)(  at x>>1  (9) 

with indexes, for example,  = 0,273 [26] and   = 2,5 
[27]. 

The same scaling ratios (6), (8) and (9) are 
used for the polymeric starts, but the indexes   and   
are function on the number of rays. 

Let’s note, finally, that the scaling approach to 
the description of the distribution function in a form (6) 
in spite of its universality is approximate and limited. In 
particular, it not covers the most important field of the 
parameter x in (8) and (9) between x << 1 and x >> 1 
change, in which P(N) takes the maximal values 
corresponding to the most probable conformational state 
of the polymeric chain. That is why, even the 
calculation of the indexes   and   doesn’t give the 
possibility to describe the thermodynamical properties 
of the conformational state of polymeric chains and 
their transformation, for example at the deformation; 
this is not allow strictly to estimate the elastic properties 
of the conformational volume. 

Exact form of the distribution function and 
following from it thermodynamical properties of linear 
polymeric chain conformation are strictly determined in 
the SARW statistics for ideal diluted [28] and 
concentrated [29] solutions. Here this approach is 
spread on the regular polymeric stars in diluted and 
concentrated solutions with the description of their 
thermodynamical and dynamical properties. 
 

2. Diluted solution of polymeric stars 
 

2.1. Selfavoiding random walk statistics 
 

Let polymeric star with the s rays by the same 
length N is inserted into dmeasured lattice space with 
the parameter of a cubic cell equal to the statistical 
length of a monomeric link of the rays of star, and let Z 
is the number of cells of the lattice space, in which there 
are the all sN links of a star. We will be neglect by the 
effects of interactions, assuming that the all possible 
configurations of polymeric star are energetically equal. 

Let mark any undefined pair of rays and will be 
considered it as the linear polymeric chain by length of 
2N. Let fix its one end as the referenced position of the 
Gaussian phantom walks of the second end. Let define 

via in  steps of walks the end of the marked chain 

relatively its beginning along the i directions of 
dmeasured lattice space, limited by the condition of 
the normalization 
 

 
i

i Nn 2     (10) 

The number of methods for the realization of 

walks along the i direction is equal to !!/! 
iii nnn , 

where the numbers of the steps into positive 
in  and 

into negative 
in  directions connected via the ratio 

iii nnn   . Since the a priori probability of a choice 

of the positive or negative direction for every step is the 

same and is equal to 1/2, the probability of  in  that 

under given in  will be done of 
in  positive and 

in  

negative steps, will be determined by the Bernoulli’s 
equation: 

  !!/!
2

1 





 iii

n

i nnnn
i

   (11) 

Inputting the numbers of the resulting steps via 

the ratio   iii nns , we have 

  2/iii snn  ,   2/iii snn  . Then the (11) 

can be rewritten as follow: 

    )!2/)(()!2/)/((!2/1 iiiii
n

i snsnnn i 
    

(12) 

For the walks along the all directions of the 
dmeasured space we have 

 

 
i

iiiii
N snsnnn )!2/)(()!2/)/((!)2/1()( (13) 
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The condition of the absence of 
selfintersection trajectories of walks requires from the 
point of view of the links of star per cells distribution 
that in every cell of the lattice space should be exist not 
more than one link of a star. The links of a polymeric 
chain are continuous; they cannot be separated one from 
other and located upon the cells into the undefined 
order. Therefore, the number of a links in a chain is its 
essential distinctive feature. The links of the different 
rays are also distinguishable. That is why the number of 
different methods location of sN distinguishable links of 
a star per Z similar cells under condition that in every 
cell cannot be more than one link is equal to 

)!/(! sNZZ  . Due to the identity of the cells, a priori 

probability of fact that the presented cell will be 
occupied by a link is equal to Z/1 , will be not 

occupied  )/11( Z . Therefore, the probability 

)(z  of sN distribution of the distinguishable links of a 

star per Z identical cells under condition, that in every 
cell can be not more than one link, will be determined 
by the Bernoulli’s distribution: 

 

sNZsN

ZZsNZ
Zz 


 ︶︵︶︵
︶!︵

!

︶︵

1
1

1    (14) 

Distribution (13) describes the trajectory of the 
walks of undefined marked linear chain by the length 
2N, whereas the expression (14) determines the 
distribution of the all sN links of a star upon the Z 
identical cells. That is why the probability )2( N  of 

the common fact consisting in that the trajectory of the 
random walk for the chosen chain by the 2N length is 
the trajectory without the selfavoiding is equal 

 

)())(()2( /2 nZN s    (15) 

Here the index 2/s is the result of the division 
of 2N on sN, 

Using the Stirling’s formula by the following 
type NNNN  ln!ln  at N >> 1, sNZ  , 

1N , 1in  and decomposition 

ZZ /1)/11ln(  , 

ZsNZsN 2/)2/1ln(  , 

2/)/(/)/1ln( 2
iiiiii nsnsns   in accordance 

with the condition ii ns  , and assuming N(N1) = 

N 2 , we will obtained the asymptotic form (15) with the 
accuracy to the constant multiplier neared to the one: 

 









 
i i

i

n

s

Z

Ns
N

22

2

1)2)(2/(
exp)2(

    

(16) 

The transition to the metric dmeasured space 
is possible via the introduction of the variable of the 

displacement ix  along the i direction of the end of a 

chain from its beginning, 
 

2/1|| dsax ii  ,   (17) 

and also of the standard deviation i  of the 

Gaussian part in (16) 
 

dna ii
22      (18) 

Accordingly to the condition of the 
normalization (10) the following relationship is 

superposed on the value i : 

 

 
i

i Nda 222    (19) 

The expression (16) is true for any undefined 
chosen pair of the rays representing by itself the linear 
chain by the length 2N. Therefore, for the all of them Z 
is general parameter characterizing in metric space the 
conformational volume of polymeric star: 
 

d

i
i axZ     (20) 

So, taking into account the (17)(20), a 
distribution (16) can be rewritten as follow: 

= ∏ ∑
i i

2
i

2
ii

2d σ/x)2/1(x/)N2)(2/s(aexp)N2(ω       (21) 

Distribution (21) in metric space determines 

the probability )2( N 
i

idx  of fact that the 

trajectory of the selfavoiding walk of any undefined 
pair of rays representing by itself the linear chain by 2N 

length, under the given values of s, N and i  will be 

finished into elementary volume 
i

idx , locating on the 

surface of ellipsoid with the semiaxes x i , i = 1,d. 

 
2.2. Thermodynamics of conformation and 

deformation of polymeric stars 
 

Without taking into account of the energetic 
effects of the interactions, the main factor determining 
the thermodynamic properties of the conformational 
state of polymeric star is the entropy of the 
selfavoiding random walks, which accordingly to the 
Boltzmann is determined by the thermodynamical 
probability of a state, that is by the number of methods 
of its realization; such methods are the trajectories of 
the selfavoiding random walks or configurations. 

A connectedness of the links in polymeric 
chain imposes the first and essential limitation on the 
trajectories of walks – an inhibition of the step 
backwards. Consequently, the number of variants of a 
step of walk trajectory cannot be more than 2d1. Only 
the first step has 2d variants of the motion. This means, 

that the maximal number maxL  of the trajectories of 

walk for undefined pair of rays will be equal 
 

NdddL 2
max )12))(12/(2(   (22) 

If the presented state is realized by L methods, 

then its probability is equal to max/ LL , that is why let 
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determine the number L(2N) of configurations for the 
undefined chosen pair of the rays via expression: 
 

max/)2()2( LNLN    (23) 

It’s follow from this: 
 

)2()12))(12/(2()2( 2 NdddNL N     (24) 

For polymeric star the number of independent 
pairs from s rays is equal to s(s1)/2. That is why, the 
number of methods L(sN) for the realization of 
conformational state of polymeric star will be equal: 
 

  2/)1()2()(  ssNLsNL   (25) 

Therefore, in accordance with Boltzmann, the 

general entropy )(ln0 sNLkS   of the 

conformational state of polymeric star can be 
represented as two components: 

 

)2(ln
2

)1(
)12(

12

2
ln

2

)1( 2
0 N

ss
kd

d

dss
kS N 





 (26)  

The first term is positive and is more than the 
second one; it takes into account the all trajectories of 
walk with imposed on them singular limitation of the 
connectedness of the links into a chain, and doesn’t 
accept the reverse step. The second term is negative 
( 1)2( N  ); it takes into account the additional 

limitations on the trajectories of walk by requirement of 
their selfintersection absence. At this, the first term at 
given data s, N, d is the constant value, whereas the 
second term via )2( N  is the function on the 

conformational state. That is why let assume only the 
second term in (26) as the entropy S of the 
conformational state of a polymeric star: 
 

)2(ln)2/)1(( NsskS    (27) 

Negative value of determined in such a way 
entropy of the conformation permits to consider the 
conformation as the statistical form of the 
selforganization of polymeric stars, and the numerical 
measure of this selforganization is entropy accordingly 
to (27). 

Free energy of the conformational state without 
taking into account of the energetic effects is equal to 

TSxF )( . By combining of (21) and (27), we will 

obtain: 



















  i i

i

i
i

d x

x

Nsass
kTxF

2

22

2

1)2)(2/(

2

)1(
)(


   

(28) 

Next, among the all possible conformational 
states let mark the most probable or thermodynamically 
equilibrium conformational states, to which the 
maximum S and the minimum F correspond in 

accordance with the condition 0/)(  ixxF  at 

ii Xx  . By differing of (28), we have 





















 2

2)2)(2/(

2

)1(
/)(

i

i

i
ii

d

i

x

xx

Nsass
kTxxF


   (29) 

By equaling of the right part to zero and solving 
the system consisting of the algebraic equations for the 
all i, we will find the most probable or equilibrium 

values of iX , which are the semiaxes of the 

equilibrium conformational ellipsoid: 
)2/(1

2 /)2)(2/(










 

d

i
i

d
ii NsaX 

         

(30) 

Under the absence of the external forces and 
into the ideal solution the all directions of the walk are 

equiprobable accordingly to condition dNni /2 ; 

that is why parameters i  in accordance with the (18) 

take the same value equal to: 
 

Na 222
0      (31) 

The substitution of values 0 i  in (30) 

based on (31) makes the semiaxes of the equilibrium 
conformational ellipsoid the same and equal to the 
conformational radius of the polymeric star: 
 

)2/(1)2/(3 )2/()2(  dd
s sNaR   (32) 

Let’s estimate the branching index Rg  

determined by the ratio (2) with the use of the 

expressions (3) for fsR  and (32) for sR : 

 
)2/(4)2/(  d

R sg    (33) 

Calculations accordingly to (33) for variant d = 
3 at s = 3 and s = 12 give the values equal to 0,73 and 
0,24 respectively, which are good agreed with the 
experimental data 0,78 and 0,24 [31]. 

Under the action of external forces along the 
axes of dmeasured space appearing in particular at the 
transition of polymeric star from the ideal solution into 

the real one, 0 i  and spherical conformational 

space of the polymeric star is deformed into the 

ellipsoid with the semiaxes iX  accordingly to (30), 

equilibrium as to i . We assume the following 

variables as a measure of the conformational volume 
deformation: 
 

sii RX /     (34) 

 
i i

i
d
siv RX  / ,              (35) 

which represent by themselves the multiplicities of 
linear and volumetric deformation respectively. 

In accordance with the condition of 

normalization (10) the values of i  cannot accept the 

undefined values. Let’s determine the relationship 
between them by introducing the secondary parameters: 
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0/ ii      (36) 

It is follows from the determinations of i  

from (18) and of 0  from (31): 

 

 
i

i d2     (37) 

Bu substitution of the values 0 ii   in 

(30) and taking into account (34) we will find 
 

)2/(1 









 

d

i
iii    (38) 

Therefore, 

 












i

d

i
iiv

)2/(2

 ,  (39) 

so 
 

2/1
vii       (40) 

 
Accordingly to (37) and (40) we have 

 

 
i

vi d  /2     (41) 

An analysis of (41) shows, that under any 
deformation of the spherical conformational volume of 

polymeric star, to which the values of dii .1,1   

and 1v  correspond, into the conformational 

ellipsoid, the multiplicity of the volumetric deformation 

is decreased ( 1v );, that means the compaction of 

the conformational volume of polymeric star. 

Next, let’s determine a free energy )(F  of 

the equilibrium conformational ellipsoid by substitution 

in (28) of values isii RXx  : 

v
s ssRd

kTF 


 /
2

)1(

2

2
)(

2

0










       (42) 

Here 

    )2/(2)2/()4(2
0 2/2)/(  ddd

s sNR          (43) 

That is why it can be also written: 

      v
dddd ssNdkTF  /12/2)2/)2(()( )2/()4()2/()4(  

   
(44) 

For strainless state 1v , that is why a work 

of its transition into a deformed state in the system of 
the mechanics signs will be equal: 




















 1

1

2

)1(

2

2
2

0 v

s
def

ssRd
kTF


   

(45) 

Such work is positive, that is in the system of 
the mechanics signs it’s realized under the system. If, 
however, the conformational volume is changed from 

the one deformed state with '
v  into another deformed 

one with "
v , then the deformation work will be equal to: 






















'''

2

0

11

2

)1(

2

2

vv

s
def

ssRd
kTF


,   (46) 

and can be characterized by any sign. 
Let’s determine the pressure of conformation Р 

of polymeric star via usual thermodynamic expression 
 

PVF  /)(    (47) 

as a measure of relationship between free energy 
and volume of conformation. Since the conformational 

volume is equal to v
d
sRV   we have 

d
sv RFP /)/)((     (48) 

By differing the (42) and (44) upon v  we will 

obtain respectively: 

2

2

0 2

)1(

2

2
v

d
s

s R
ssRd

kTP 











 , (49) 

      2)2/(4)2/()1(4 /12/2
2

2
v

ddd

d
ssN

d

a

kT
P 


 

 
(50) 

It’s follows from the comparison of (42) and 
(49), that the pressure of conformation numerically is 
equal to density of free energy: VFP /)( . Next, 

by multiplying of this expression on  22
v

d
sRV   

and taking into account the (42) and (49), we will find 
the equation for the conformation state of the polymeric 
star in a form 
 

constFVPV 2    (51) 
where 

сonst= d
s

s R
ssRd

kT
2

)1(

2

2
2

0












 (52) 

So, the values FVPV 2  are integrals of the process 
of equilibrium deformation of the conformational 
volume of polymeric star. 
 

2.3. Modulus of elasticity 
 

Under approximation of the isotropy of 
conformational volume of polymeric star its relative 

deformation ii xx /  in i direction of dmeasured space 

under the action of the all main forces if  let’s express 

via the differential form of the Poisson’s equation: 
 

 










ij
jk

k

j

ij
j

i

i

i

x

f

x

f

x

x
Y    (53) 

Here: Y is the Young’s modulus,   is the 

Poisson’s coefficient, Ii xxY /  is the tension in 

(d1)measured plate normal to the i direction; 
ij

jx  



163 

and 
 jk

kx  are values of the areas which are normal to 

the forces if  and jf  respectively. 

Let’s rewrite (53) respectively to the Young’s 
modulus: 

  







ij i

j

i
i

ji

i

i

i
i

i

x

f

x

xx

x

f

x

x
Y 

2

               (54) 

In the system of the mechanics signs 

ii xxFf  /)( , that permits to use the expression 

(29). Under equilibrium values ii Xx   these forces 

(but not their derivatives) are equal to zero. That is why 

by differing of (29) upon ix  and jx , and next by 

substituting of the equilibrium values isii RXx   

we will obtain 
 

viii skTsxf  22
02/)1(3/  ,            (55) 

 

vjiijji skTsxfxf  2
02/)1(// 

   
(56) 

By substituting of these derivatives in (54) with 

change of ix  on the equilibrium values iX  we will 

find 

   22
0 2

)1(
/)1(3 v

d
ss R

ss
RdkTY  

 (57) 

Comparing the (57) and (49), we find the 
relationship between the Young’s modulus and the 
pressure of conformation: 

 

  )2/()1(32  dPdY    (58) 

From the other hand, in general case of the 
dmeasured space the relationship between Y and P can 
be expressed via the volumetric modulus 
 

dVVdPE /    (59) 
 

by the ratio 
 

))1(1(/  ddYE     (60) 

It’s follows from the determination of (59) and 
the equation of state (51): 

 
E = 2P     (61) 
Substituting of (61) into (60) we will obtain 

another equation of relationship between Y and P: 
 

PddY ))1(1(2      (62) 

Comparing the (62) and (58) we find the 
expression for the Poisson’s coefficient: 
 

2)1/()3(  dd    (63) 

Next, we determine the shear modulus via the 
Young’s modulus and the Poisson’s coefficient for d   
2measured space 

)1)(1/(   dY    (64) 

which is also the function on the pressure of 
conformation: 
 

P
dd

d

)1)(1)(2(

))1(3(2







   (65) 

 
2.4. Main forces and the work of deformation 

 
It follows from the determination of the main 

forces ii xxFf  /)(  in accordance with the (29) 

that at the equilibrium values ii Xx   these forces are 

equal to zero. That is why let’s determine the main 
forces as those, which should be applied to the strainless 

conformational volume d
sR , for which the 

conformational radius is equilibrium, with respect to 

0 , in order to transform it into the deformed state of 

the conformational ellipsoid with the semiaxes iX , 

equilibrium with respect to i  . This determination 

means, that in expression (29) parameter i  should be 

replaced on 0 , and values ix  should be replaced on 

iX . Then we will obtain: 


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
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


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
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i
ii

d
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X

XX

Nsass
kTf

    

(66) 

Substituting of isi RX   in (66) we will 

obtain: 

vi

vis
i

Rss
kTf





1

2

)1( 2

2
0


   (67) 

It follows from this, that in the accepted system 
of the mechanics signs the positive forces correspond to 

the stretching along i axe ( 12 vi  ), and the negative 

forces correspond to the compression ( 12 vi  ). That 

is why the main forces of deformation cannot be 
undefined, but they are ordered to the equation of the 
relationship (as it is following from the (67) and (41)): 
 

 
i

iif 0     (68) 

A work of the deformation under the action of 
the all main forces le’s describe by the expression: 

 
i

R

R

iidef

is

s

dxfA


   (69) 

Using of the ratio (67) and 
 


i

iivv dd  //    (70) 

after the integration of (69) we will obtain the 
expression 
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kT


    

(71) 

which is wholly identical to the obtained earlier (45). 
This proves the correctness of the determination of the 
main forces accordingly to (66) and (67). 

 
2.5. Dynamical properties 

 
2.5.1. Characteristic time of the transition and the 

coefficient of diffusion 
 

Characteristic time of the translational motion 

tt  of the strainless polymeric star (here we will be 

specialized on the analysis only of this situation) let’s 
determine as a time needed for the transfer of its 
equilibrium frozen conformation on the characteristic 

distance sR . At the transfer of sN  of the links on a 

distance sR  it is necessary to do  sNaRs /  steps, 

every of which is realized for a time  , which can be 
called as the characteristic time of the segmental 
motion. 

Thereby, 
 

sNaRt st )/(    (72) 

Substituting the expression (32) for sR  in (72) 

we will obtain 
 

)2/()3()2/()5( )2/()2(   dddd
t sNt  (73) 

As it was shown in [32], the diffusion 
coefficient D  at multivariate random transfer of the 
macromolecule is determined via expression: 
 

 ttD 2/2
0     (74) 

which is the analog of the Einstein’s equation 

2/2aD   for lowmolecular substances. 
At the analysis of the directed transfer of 

macromolecule along i direction of the dmeasured 
space, for example, under the action of gradient of 
chemical potential, it is necessary to use other 
determination of the diffusion coefficient: 
 

iD 
tdt2/2

0     (75) 

Substituting the expressions (73) and (31) in 
(75), finally we will obtain for the strainless polymeric 
star: 

)2/()3()2/(3
2

)2/()2(
2

 ddd
i sN

d

a
D


 (76) 

 
2.5.2. Characteristic time of the rotational motion 

and the coefficient of the elastic component of 
viscosity 

 
Viscouselastic properties of the polymeric 

solutions suppose [32] the presence both of the 
frictional and elastic components of the measured 

effective viscosity. The elastic component of the 
viscosity is gradiently dependent value, depends also on 
a composition of the solution and on the coefficient of 
the elastic component of viscosity, which is determined 
via expression: 
 

*0
re t      (77) 

Here:   is the determined earlier shear 

modulus; 

rt  is the characteristic time of the rotational 

motion. 
As the characteristic time of the rotational 

motion let’s assume a time during which the strainless 
polymeric star into the frozen equilibrium 
conformational state will be rotated around any axis on 
the characteristic angle, equal to the one radian. 
Accordingly to this determination, the links, allocated 
from the rotation axis on a distance r, pass a way r for 
r/a steps and for time (r/a) . Since the allocation of the 
all sN links in dmeasured space is unknown, we use 

the following approach [33] for the estimation of 

rt . 

Let’s design on the (d1)measured rotation 
plate the all sN links of the polymeric star. 
Conformational radius of the rotation plate is equal to 

sR , but the numbers of the projections should accept 

such acceptable values N’ and s’, that to provide the 

value sR  in (d1)measured space. Then substituting 

the values d1, N’ and s’ in expression (32) for sR  

instead of d, N and s correspondingly, we will obtain 
 

)1/(1')1/(3, )2/()2(  dd
s sNaR   (78) 

From the comparison of (32) and (78) we will 
find the acceptable values of N’ and s’ in the rotation 
plate 
 

)2/()1(, )2(2  ddNN ,
)2/()1(, )2/(2/  ddss (79) 

Let’s select on the rotation plate the linear 
polymeric chain by 2N’ length, consisting of the pair of 
rays from the s’. Let n is the number of the link of 
presented given undefined chain from the rotation axis. 

Let’s assume, that the distance nr  of this link from the 

rotation axis is ordered to the same distribution (78), 
that is: 
 

)1/(1,)1/(3 )2/(  dd
n sanr   (80) 

Although for the internal links of a chain this 
expression in not quite correct [see the previous work in 
the presented collection book], but the following 
integration shows, that the main endowment into 
characteristic time of the rotation has the links with the 
numbers neared to 2N’. 

Under the plane of rotation turn on the one 

radian, the links with the numbers of n tract a way nr  

for nr /a steps and for time )/( arn . For all s’N’ links, 

distributed upon s’/2 linear chains, the rotation time will 
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be equal to )/)(2/( , ars n . At the change of n on dn 

an increment of time consists of: 
 

dnrasdt nr )/)(2/( ,    (81) 

After the integration of (81) via the limits from 
n = 1 till n = 2N’ with taking into account of (78) we 
will obtain 

 
)1/()2(,)1/()4(, )2/()2))(4/()1((   dddd

r sNddt  (82) 

By change of N’ on N and s’ on s accordingly 
to (79), we finally find 
 


2

)2(
4

1 )2/()4(* s
N

d

d
t dd

r





   (83) 

Next, using the expressions of (65) and (50) for 

shear modulus of unstrained polymeric star v  = 1, we 

have 
 

)1()2/()2)(/( )2/(4)2/()1(4   ssNakT dddd (84) 

 

Here        11/13 dd  

Combining the (83) and (84) for determination 
of the coefficient of elastic component of viscosity in 
(77) we finally find accurate within a multiplier neared 
to the one: 

 )1()2/()2)(/( )2/()6()2/()38(0   ssNakT ddddd
e (85) 

 
Let’s comment the obtained expressions (76) 

for iD  and (85) for 0
e , comparing them with the same 

expressions for iD  and 0
e  of linear polymeric chains, 

consisting the same number of sN links. For this 
purpose let introduce the branching indexes upon (2) 

type in form iLiD DDg /  and 00 / eLeg   . For 

linear polymeric chains containing the sN links we have 

  )2/(3
2

2
 d

iL sN
d

a
D


  (86) 

   )2/()38(0  dd

deL sN
a

kT
  (87) 

Comparing the (87) and (85) and also (86) and 

(76) we have   )2/(2/  dd
D sg  and 

   12/ )2/()12(2   ssg dd
 . 

Thereby, at the same number of links, the 

polymeric stars are less mobile ( 1Dg ), but have 

considerably more coefficient of the elastic component 

of viscosity  1g , than the linear chains. 
 

3. POLYMERIC STARS IN CONCENTRATED 
SOLUTION 

 

3.1. Selfavoiding random walks statistics 
 

In concentrated solution the conformational 
volumes of polymeric stars are overlapped in 

accordance with the condition 
  , in which   is 

a density of the solution upon polymer, 
  is the 

critical density corresponding to the start of the 
conformational volumes overlapping. Due to the 
polymeric star cannot be considered as an independent 
subsystem, it is necessary to consider the all set of the 
polymeric stars in conformational volume of the 
separated system. 

Let’s introduce the screen cubic d–measured 
space containing of m intertwining between themselves 
uniform polymeric stars. Let’s separate from them any 
undefined star, and in it – any undefined pair of rays, 
forming the linear chain by 2N length. Its phantom 
Gaussian walks are ordered to the same distribution law 
(13) with the same normalization condition (10). 

However, the probability )(z  of the msN 

differed links distribution upon Z identical cells at the 
condition, that in every cell there is not more than one 
link, will be determined by a new expression: 
 

msNZmsN

ZZmsNZ

Z
z 


 )

1
1()

1
(

)!(

!
)(

    

(88) 

It follows from this, that the probability of the 
self–avoiding walks for undefined chosen pair of rays 
will be equal: 
 

  )()()2( /2 nZN ms    (89) 

Here the index 2/ms was obtained as the ratio 
2N/msN. Combining the (13) and (88) into (89) and 
using as same principles as at the derivation of the (16) 
equation, we will obtain into the asymptotic limit from 
(89): 









 
i i

i

n

s

Z

Nms
N

22

2

1)2)(2/(
exp)2(

       

(90) 

The transition to the d–measured space is 
realizable with the use of the same previous expressions 
(17)–(20), accordingly to which 
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     (91) 

 
This distribution is true for any undefined pair 

of rays of any undefined star in general space 


i

d
i axZ /  . 

3.2. Thermodynamics of conformation and 
deformation of the intertwining polymeric stars 

 
The numbers of configurations for pair of rays, 

polymeric star and m intertwined between themselves in 
m–ball polymeric stars let’s determine, correspondingly, 
by the expressions: 
 

)2()2()2( max NNLNL    (92) 

 

  2/)1()2()(  ssNLsNL   (93) 
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  2/)1()2()(  smsNLmsNL   (94) 

Therefore, in accordance with Boltzmann, 
general entropy of the self–avoiding walks of the 
intertwined polymeric stars in m–ball will be equal: 
 

    )2(ln2/)1()2(ln2/)1( max0 NsmskNLsmskS  (95) 

 
As same as earlier, only the second term in (95) 

we accept as the entropy of the conformation of m–ball 
of polymeric stars or as entropy of their self–
organization: 
 

  )2(ln2/)1( NsmskS   (96) 

At the absence of the energetic effects, a free 
energy of the conformation will be equal to: 
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From the all possible states of the polymeric 
stars in m–ball let’s choice the most probable or 
thermodynamically equilibrium states in accordance 

with the condition im xxF  /)( =0. Differentiating of 

(98), we will obtain: 
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    (98) 

Equaling the right parts of (98) to zero for all i 
= 1,d and solving the obtained system of the algebraic 
equations, let’s find the equilibrium semi–axes of the 
conformational ellipsoid, general for any pair of rays, 
any polymeric star and m–ball in the large: 
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At the equiprobability of walks upon the all 
directions of d–measured space that is reflected by the 

condition of 0 i  accordingly to (31), we have the 

spherical conformational volume with the radius: 

    )2/(1)2/(3 2/2  dd
m msNaR  (100) 

Deformation of the m–ball at its transition from 
the spherical (unstrained) conformational state into the 

ellipsoid with the semi–axes iX  let’s express via the 

multiplicities of the linear i  and volumetric v  

deformation via ratios: 
 

mii RX / ,  
i

i
d
m

i
iv RX         (101) 

 
which are also ordered to the equation of the 
relationship (41). 

Next, substituting the equilibrium values 

imi RX   in (97) we will find the equilibrium free 

energy of the strained m–ball: 
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It follows from this, that in the system of the 
mechanics signs a work of the transition of the 

unstrained m–ball with 1v  into the deformated 

state of the conformational ellipsoid with v  < 1 will 

be equal to: 
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(103) 

Next, determining the conformation pressure 
via the same thermodynamic ratio (47), in which the 
conformational volume of m–ball in general case is 

equal to v
d
mRV  , we find 
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Again we have VFP /  and the equation of 
the conformational state of m–ball for intertwined 
polymeric stars: 
 

constFVPV 2 ,   (105) 
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(106) 

 
3.3. Modulus of elasticity of mball for intertwining 

polymeric stars 
 

An equation of the deformation for the m–ball 
of the intertwined polymeric stars we write in the same 
general differential form (53) and transform it relatively 
to the Young's modulus into the form (54). 
Corresponding derivatives we find via the differencing 
of (98) with the following substitution of the 

equilibrium values imii RXx  : 

 

viii skTmsxf  22
02/)1(3/  ,        (107) 

vjiijji skTmsxfxf  2
02/)1(// 

    
(108) 

Substituting of these expressions in (54), we 
will obtain: 
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Comparing of (109) with the expression (104) 
for Р, we have the relationship between Y  and Р: 
 

  )2/()1(32  dPdY    (110) 

From the other hand, determining of Y via the 
volumetric modulus Е = 2Р by the ratio (60), we will 
again obtain the relationship by (62) type, comparing of 
which with the (110), we will obtain the expression for 
the Poisson coefficient in the well–known form (63). 
So, the Poisson coefficient both for the linear chains and 
for the polymeric stars in diluted and concentrated 
solutions is the universal function only on the Euclidian 
space. 
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Using the relationship (64), let’s express the 
shear modulus   of the m–ball of the intertwined 

polymeric stars via the conformation pressure in the 
known form: 
 

P
dd

d
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))1(3(2
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

   (111) 

 
3.4. Main forces and a work of the deformation of 

mball of the intertwining polymeric star 
 

The main forces of the deformation let’s again 
determine as the forces, which should be applied to the 
m–ball, in order to transfer it from the unstrained state 

equilibrated with respect to the 0 , into the deformated 

state, equilibrated with respect to the i . That is why it 

is necessary again to substitute instead of i  the value 

0  in the expression imi xFf  /  accordingly to 

(98), and ix  to change on iX , that is 
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After the substitution imi RX  , we have 
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Describing the deformation work of the m–ball 

by the same equation of mechanics (69) with the use of 
the expression (113) for the main forces, we will obtain 

again the expression defdef FA   in accordance with 

the (103). 

3.5. Determination of m , mR , mF  and Р as the 

explicit functions s, N and concentration   of 

polymeric stars in solution 
 

Concentration (density of solution upon 
polymer) of polymeric stars in concentrated solution is 
equal to 
 

d
mARNmsNM 0    (114) 

where 0M  is the molar mass of a link. At m = 1 we 

have the critical concentration, to which the beginning 
of the polymeric stars conformational volumes 
overlapping corresponds: 
 

 d
sARNsNM 0    (115) 

From the comparison of (114) and (115) 
follows 
 

   /)2/(2 dm    (116) 

Determining the density in the volume of a link 
via expression 
 

d
AaNM /00     (117) 

 
we find 
 

    )2/(2)2/()1(2
0 2/2   ddd sN  (118) 

This permits to write for m and mR  the 

expressions 
 

      12/)2(
0

1 2//2  sNm dd  ,  (119) 

 

   2/1
0/2 NaRm  .  (120) 

 
via substituting of which in (102) and (104), we 

will find 
 

         v
dd

m sNkTdF  /1/22/2)( 2/)4(
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(121) 
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We can easy find the explicit functions of the 
modulus of elasticity on N, s and   via Р in 

accordance with (122). 
 

3.6. A work of the intertwining of polymeric 
stars 

 
A change of free conformation energy at the 

transition of the m polymeric stars from the diluted 
solution into the concentrated one is equal to 

sm mFF  . In calculation per one polymeric chain we 

have: 

  mmFFF smp /   (123) 

In a system of the mechanics signs this value 
determines a work of the polymeric stars intertwining as 
a work of the polymeric star transfer from the diluted 
solution in concentrated one. After the substitution in 
(123) of the expressions (42), (102) we will obtain: 
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kT
d
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where 
   /)2/(2 dm . From the other hand, 

expressing the conformational volumes of polymeric 

chains in diluted solution d
ss mRV  , and in 

concentrated d
mm RV  , we have 

 
)2/(2/  d

smv mVV       (125) 

Therefore, a work of the polymeric stars 
overlapping into the m–ball represents by itself a work 
of the conformational volume compression at the 
transfer of the star from the diluted solution into the 
concentrated one: 
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3.7. Dynamical properties of polymeric stars             

in concentrated solution 
 

3.7.1. Characteristic time of the transition and             
a diffusion coefficient 

 
Characteristic time of the translational motion 

of polymeric stars in concentrated solution let’s 

determine as a time 
mtt , for which the m–ball of the 

intertwined polymeric stars with the frozen equilibrium 
conformation will be displaced on the effective distance 

mR  consequently of the random walks upon the all d 

directions of space. The next expression corresponds to 
this determination: 
 

  msNaRt mmt /    (127) 

in which as before   is the characteristic time of 
the segmental motion. Substituting in this expression the 

ratios (119) and (120), determining the m and mR , we 

will obtain: 

     2/)3(
0

1 /2   dd
mt Nt   (128) 

A diffusion coefficient for the chosen direction, 
determined earlier by the ratio (75), will be described 
via expression: 
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3.7.2. Characteristic time of the rotational motion 

and the coefficient of the elastic component                 
of viscosity 

 

Characteristic time 
mrt  of the rotational 

motion of the m–ball of the intertwined polymeric stars 
let’s determine as a time, needed for the turn of the 
frozen equilibrium conformation of m–ball on the 
elementary angle equal to the one radian. 

Let’s select the rotation plate by dimensionality 

d–1 with the same conformational radius mR  and 

blueprint on it the all msN links of the m–ball. Obtained 
projections N’, s’ and m’ are ordered to the SARW 
statistics, that is why the conformation radius in d–1 
plate can be write as follow: 
 

    )1/(1,)1/(3, )2/(2 
 dd

m msNR                  (130) 

Comparing the (130) and (100), we determine 
the relationships 
 

)2/()1(, )2()2(  ddNN , )2/()1(, )()(  ddmsms         (131) 

 
Let’s select a chain by the 2N’ length from the 

general numbers of the projections. Assuming that the 
internal links of this chain with the numbers of n from 

the rotation center are ordered to the same regularity 
(130), their rotation radius will be expressed via ratio: 
 

   )1/(1,)1/(3 2/


dd
n msanr   (132) 

At the turn on an angle by the one radian these 
projections with the numbers n from the rotation center 

pass the distance nr  for nr /a steps and for time 

( nr /a) . At the change of n on dn an increment of time 

consists of dnardt nr )/(1  . By integrating of this 

expression from n = 1 till n = 2N’, we will obtain: 
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For the all 2/)'(ms  chains we have 

2/)( ,
1 mstt rmr
  . Taking into account the 

relationships (131) we finally find: 
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We determine the coefficient of the elastic 
component of viscosity of concentrated solution of 

polymeric stars  mrme t 0  via the characteristic time 

mrt  and the shear modulus  . Using the ratios (111) 

and (122) at v =1 for   and (134) for 
mrt , we find: 
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Here the value 

)1)(1)(4/())1(3)(1(   dddd  for d = 3 

space neared to the one, that is why it can be written: 

  
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3
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4. Conclusion 
 
Self–avoiding random walks statistics 

completely describes the thermodynamic and dynamic 
properties of the polymeric stars in diluted solutions as 
the function on a length and the number of rays; in 
concentrated solutions additionally as the function on 
the concentration of polymer. 
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