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It has been shown that nanofiller particles (aggregates of particles) “chains” in elastomeric nanocomposites are 
physical fractal within the self-similarity (and, hence, fractality) range ~500-1450 nm. The low dimensions of nanofiller 
particles (aggregates of particles) structure in elastomeric nanocomposites are due to high fractal dimension of 
nanofiller initial particles surface.  
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Показано, что “цепи” частиц (агрегатов частиц) нанонаполнителя в эластомерных нанокомпозитах 
являются физическими фракталами в диапазоне самоподобия (и, следовательно, фрактальности) ~500-1450 
нм. Небольшие размеры структуры частиц (агрегатов частиц) нанонаполнителя в эластомерных 
нанокомпозитах обусловлены большой фрактальной размерностью поверхности исходных частиц 
нанонаполнителя. 

 
Introduction 

 

It is well-known [1, 2], that in particulate-filled 
elastomeric nanocomposites (rubbers) nanofiller 
particles form linear spatial structures (“chains”). At the 
same time in polymer composites, filled with disperse 
microparticles (microcomposites) particles (aggregates 
of particles) of filler form a fractal network, which 
defines polymer matrix structure (analog of fractal 
lattice in computer simulation) [3, 4, 5]. This results to 
different mechanisms of polymer matrix structure 
formation in micro- and nanocomposites. If in the first 
filler particles (aggregates of particles) fractal network 
availability results to “disturbance” of polymer matrix 
structure, that is expressed in the increase of its fractal 
dimension df [3], then in case of polymer 
nanocomposites at nanofiller contents change the value 
df is not changed and equal to matrix polymer structure 
fractal dimension [6]. As it has to been expected, 
composites indicated classes structure formation 
mechanism change defines their properties change, in 
particular, reinforcement degree. 

At present there are several methods of filler 
structure (distribution) determination in polymer matrix, 
both experimental [7, 8] and theoretical [3]. All the 
indicated methods describe this distribution by fractal 
dimension Dn of filler particles network. However, 
correct determination of any object fractal (Hausdorff) 
dimension includes three obligatory conditions. The 
first from them is the indicated above determination of 
fractal dimension numerical magnitude, which should 
not be equal to object topological dimension. As it is 
known [9], any real (physical) fractal possesses fractal 
properties within a certain scales range [10]. And at last, 
the third condition is the correct choice of measurement 
scales range itself. As it has been shown in papers [11, 
12], the minimum range should exceed at any rate one 
self-similarity iteration. 

The present paper purpose is dimension Dn 
estimation, both experimentally and theoretically, and 
checking two indicated above conditions fulfillment, i.e. 
obtaining of nanofiller particles (aggregates of particles) 
network (“chains”) fractality strict proof in elastomeric 

nanocomposites on the example of particulate-filled 
butadiene-styrene rubber. 
 

Experimental 
 

The elastomeric particulate-filled 
nanocomposite on the basis of butadiene-styrene rubber 
(BSR) was an object of the study. The technical carbon 
of mark № 220 (TC) of industrial production, nano- and 
microshungite (the mean filler particles size makes up 
20, 40 and 200 nm, accordingly) were used as a filler. 
All fillers content makes up 37 mass %. Nano- and 
microdimensional disperse shungite particles were 
obtained from industrially extractive material by 
processing according to the original technology. A size 
and polydispersity of the received in milling process 
shungite particles were monitored with the aid of 
analytical disk centrifuge (CPS Instruments, Inc., USA), 
allowing to determine with high precision the size and 
distribution by sizes within the range from 2 nm up to 
50 mcm. 

Nanostructure was studied on atomic-power 
microscopes Nano-DST (Pacific Nanotechnology, 
USA) and Easy Scan DFM (Nanosurf, Switzerland) by 
semi-contact method in the force modulation regime. 
Atomic-power microscopy results were processed with 
the aid of specialized software package SPIP (Scanning 
Probe Image Processor, Denmark). SPIP is a powerful 
programmes package for processing of images, obtained 
on SPM, AFM, STM, scanning electron microscopes, 
transmission electron microscopes, interferometers, 
confocal microscopes, profilometers, optical 
microscopes and so on. The given package possesses 
the whole functions number, which are necessary at 
images precise analysis, in the number of which the 
following are included: 
1) the possibility of three-dimensional reflecting 
objects obtaining, distortions automatized leveling, 
including Z-error mistakes removal for examination 
separate elements and so on; 
2) quantitative analysis of particles or grains, more than 
40 parameters can be calculated for each found particle 
or pore: area, perimeter, average diameter, the ratio of 
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linear sizes of grain width to its height distance between 
grains, coordinates of grain center of mass a.a. can be 
presented in a diagram form or in a histogram form. 
 

Results and Discussion 
 

The first method of dimension Dn experimental 
determination uses the following fractal relationship 
[13, 14]: 




ln

ln N
Dn

 (1) 

where N is a number of particles with size . 
Particles sizes were established on the basis of 

atomic-power microscopy data (see Fig. 1). For each 
from the three studied nanocomposites no less than 200 
particles were measured, the sizes of which were united 
into 10 groups and mean values N and  were obtained.  

 
a 

 
b 

c 
Fig. 1 - The electron micrographs of nanocomposites 
BSR/TC (a), BSR/nanoshungite (b) and 
BSR/microshungite (c), obtained by atomic-power 
microscopy in the force modulation regime 
 

The dependences N() in double logarithmic 
coordinates were plotted, which proved to be linear and 

the values Dn were calculated according to their slope 
(see Fig. 2). It is obvious, that at such approach fractal 
dimension Dn is determined in two-dimensional 
Euclidean space, whereas real nanocomposite should be 
considered in three-dimensional Euclidean space. The 
following relationship can be used for Dn re-calculation 
for the case of three-dimensional space [15]: 

  
2
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DdDd
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where D3 and D2 are corresponding fractal dimensions 
in three- and two-dimensional Euclidean spaces, d=3. 

 
Fig. 2 - The dependence of nanofiller particles 
number N on their size  for nanocomposites 
BSR/TC (1), BSR/nanoshungite (2) and 
BSR/microshungite (3) 
 

The calculated according to the indicated 
method dimensions Dn are adduced in table 1. As it 
follows from the data of this table, the values Dn for the 
studied nanocomposites are varied within the range of 
1.10-1.36, i.e. they characterize more or less branched 
linear formations (“chains”) of nanofiller particles 
(aggregates of particles) in elastomeric nanocomposite 
structure.  
 
Table 1 - The dimensions of nanofiller particles 
(aggregates of particles) structure in elastomeric 
nanocomposites 

The nano 
composite 

Dn, 
the 

equa
tions 
(1) 

Dn, 
the 

equat
ions 
(3) 

d0 dsurf n Dn, 
the 

equa
tions 
(7) 

BSR/TC 1.19 1.17 2.86 2.64 0.48 1.11 
BSR/nano 
shungite 

1.10 1.10 2.81 2.56 0.36 0.78 

BSR/micro
shungite 

1.36 1.39 2.41 2.39 0.32 1.47 

 
Let us remind that for particulate-filled 

composites polyhydroxiether/graphite the value Dn 
changes within the range of ~ 2.30-2.80 [7], i.e. for 
these materials filler particles network is a bulk object, 
but not a linear one [9]. 

Another method of Dn experimental 
determination uses the so-called “quadrates method” 
[16]. Its essence consists in the following. On the 
enlarged nanocomposite microphotograph (see Fig. 1) a 
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net of quadrates with quadrate side size i, changing 
from 4.5 up to 24 mm with constant ratio i+1/i=1.5, is 
applied and then quadrates number Ni, in to which 
nanofiller particles hit (fully or partly), is calculated. 
Five arbitrary net positions concerning microphotograph 
were chosen for each measurement. If nanofiller 
particles network is fractal, then the following 
relationship should be fulfilled [16]: 

2/~ nD
ii SN 

 (3) 

where Si is quadrate area, which is equal to 
2
i . 

In Fig. 3 the dependences of Ni on Si in double 
logarithmic coordinates for the three studied 
nanocomposites, corresponding to the relationship (3), 
is adduced.  

 

 
Fig. 3 - The dependences of covering quadrates 
number Ni on their area Si, corresponding to the 
relationship (3), in double logarithmic coordinates 
for nanocomposites on the basis of BSR. The 
designations are the same, that in Fig. 2 
 

As one can see, these dependences are linear, 
that allows to determine the value Dn from their slope. 
The determined according to the relationship (3) values 
Dn are also adduced in table 1, from which a good 
correspondence of dimensions Dn, obtained by the two 
described above methods, follows (their average 
discrepancy makes up 2.1 % after these dimensions re-
calculation for three dimensional space according to the 
equation (2)). 

As it has been shown in paper [17], at the 
relationship (3) the usage for self-similar fractal objects 
the condition should be fulfilled: 

nD
iii SNN 

 ~1  (4) 

In Fig. 4 the dependence, corresponding to the 
relationship (4), for the three studied elastomeric 
nanocomposites is adduced. As one can see, this 
dependence is linear, passes through coordinates origin, 
that according to the relationship (4) is confirmed by 
nanofiller particles (aggregates of particles) “chains” 
self-similarity within the selected i range. It is obvious, 
that this self-similarity will be a statistical one [17].  

 
 
Fig. 4 - The dependences of (Ni-Ni+1) on the value 

2/nD
iS  , corresponding to the relationship (4), for 

nanocomposites on the basis of BSR. The 
designations are the same, that in Fig. 2 
 

Let us note, that the points, corresponding to 
i=16 mm for nanocomposites BSR/TC and 
BSR/microshungite, do not correspond to a common 
straight line. Accounting for electron microphotographs 
of Fig. 1 enlargement this gives the self-similarity range 
for nanofiller “chains” of 464-1472 nm. For 
nanocomposite BSR/nanoshungite, which has no points 
deviating from a straight line of Fig. 4, i range makes 
up 311-1510 nm, that corresponds well enough to the 
indicated above self-similarity range. 

In papers [11, 12] it has been shown, that 
measurement scales Si minimum range should contained 
at least one self-similarity iteration. In this case the 
condition for ratio of maximum Smax and minimum Smin 
areas of covering quadrates should be fulfilled [12]: 

nD

S

S /2

min

max 2  (5) 

Hence, accounting for the defined above 
restriction let us obtain Smax/Smin=121/20.25=5.975, that 

is larger than values nD/22  for the studied 
nanocomposites, which are equal to 2.71-3.52. This 
means, that measurement scales range is chosen 
correctly. 

The self-similarity iterations number  can be 
estimated from the inequality [12]: 









2

2/

min

max

nD

S

S
 (6) 

Using the indicated above values of the 
included in the inequality (6) parameters, =1.42-1.75 is 
obtained for the studied nanocomposites, i.e. in our 
experiment conditions self-similarity iterations number 
is larger than unity, that again is confirmed by the value 
Dn estimation correctness [8]. 

And let us consider in conclusion the physical 
grounds of smaller values Dn for elastomeric 
nanocomposites in comparison with polymer 
microcomposites, i.e. the causes of nanofiller particles 

Ni-Ni+1
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(aggregates of particles) “chains” formation in the first. 
The value Dn can be determined theoretically according 
to the equation [3]: 

18.4

10.755.2 0 


dDn
if

 (7) 

where if is interfacial regions relative fraction, d0 is 
nanofiller initial particles surface dimension. 

The dimension d0 estimation can be carried out 
with the aid of the relationship [6]: 

dd

p
u

D
S













0

2
410  (8) 

where Su is nanofiller initial particles specific surface in 
m2/g, Dp is their diameter in nm, d is dimension of 
Euclidean space, in which a fractal is considered (it is 
obvious, in our case d=3). 

The value Su can be calculated according to the 
equation [18]: 

pn
u D

S



6  (9) 

where n is nanofiller density, which is determined 
according to the empirical formula [6]: 

  3/1188.0 pn D  (10) 

The results of value d0 theoretical estimation 
are adduced in table 1. The value if can be calculated 
according to the equation [6]: 

 2 surfnif d  (11) 

where n is nanofiller volume fraction, dsurf is fractal 
dimension of nanoparticles aggregate surface. 

The value n is determined according to the 
equation [6]: 

n

n
n

W


  (12) 

where Wn is nanofiller mass fraction and dimension dsurf 
is calculated according to the equations (8)-(10) at 
diameter Dp replacement on nanoparticles aggregate 
diameter Dagr, which is determined experimentally (see 
Fig. 5). 
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Fig. 5 - The initial particles diameter (a), their 
aggregates size in nanocomposite (b) and distance 
between nanoparticles aggregates (c) for 
nanocomposites on the basis of BSR, filled with 
technical carbon, nano- and microshungite 
 

The results of dimension Dn theoretical 
calculation according to the equations (7)-(12) are 

adduced in table 1, from which theory and experiment 
good correspondence follows. The equation (7) 
indicates unequivocally the cause of filler in nano- and 
microcomposites different behaviour. The high (close to 
3, see table 1) values d0 for nanoparticles and relatively 
small (d0=2.17 for graphite) values d0 for microparticles 
at comparable values if for composites of the indicated 
classes [3, 6]. 
 

Conclusions 
 

Therefore, the present paper results have 
shown, that nanofiller particles (aggregates of particles) 
“chains” in elastomeric nanocomposites are physical 
fractal within self-similarity (and, hence, fractality [14]) 
range of ~ 500-1450 nm. In this range their dimension 
Dn can be estimated according to the equations (1), (3) 
and (7). The cited examples demonstrate the necessity 
of the measurement scales range correct choice. As it 
has been noted earlier [19], linearity of the plots, 
corresponding to the equations (1) and (3), and Dn 
nonintegral value do not guarantee object self-similarity 
(and, hence, fractality). The nanofiller particles 
(aggregates of particles) structure low dimensions are 
due to the initial nanofiller particles surface high fractal 
dimension. 
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