ТЕХНОЛОГИЯ МАТЕРИАЛОВ И ИЗДЕЛИЙ ТЕКСТИЛЬНОЙ И ЛЕГКОЙ ПРОМЫШЛЕННОСТИ

УДК 675.15

И. Ш. Абдуллин, В. П. Тихонова, Г. Р. Рахматуллина, Р. Ф. Ахвердиев, О. В. Артемьева, Д. К. Низамова

ИССЛЕДОВАНИЕ ВЛИЯНИЯ НЕРАВНОВЕСНОЙ НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЫ НА СТРУКТУРУ ДЕРМЫ ПОЛУФАБРИКАТА ИЗ ШКУР РЕЧНЫХ РЫБ: САЗАНА И СУДАКА

Ключевые слова: неравновесная низкотемпературная плазма, кожа рыбы.

В работе исследовано влияние неравновесной низкотемпературной плазмы на структуру дермы полуфабриката из шкур речных рыб. Установлено, что применение плазмы положительно влияет на температуру сваривания исследуемых образцов по сравнению с контрольными образцами шкур сазана и судака.

Keywords: nonequilibrium low-temperature plasma, fish skin.

The influence of nonequilibrium low-temperature plasma on the structure of the dermis of the skin semi-river fishes. Found that the use of plasma has a positive effect on the temperature of the welding of the samples compared to control samples skins carp and walleye.

Введение

В 2003 г. принята Концепция развития рыбного хозяйства РФ на период до 2020 г., в которой определена цель его развития: достижение устойчивого функционирования рыбохозяйственного комплекса на основе сохранения воспроизводства и рационального использования водных биоресурсов, развития аквакультуры, направленных на удовлетворение внутреннего спроса на рыбные товары.

В сложившихся условиях рациональное использование рыбного сырья, реализация комплексного подхода к его переработке с изготовлением пищевой, кормовой, технической продукции и натуральной кожи являются стратегическим направлением развития рыбохозяйственного комплекса России.

В данной работе предпринята попытка разработки технологии производства натуральной кожи из шкур речных рыб с применением неравновесной низкотемпературной плазмы, а именно, исследовано влияние неравновесной низкотемпературной плазмы на структуру дермы полуфабриката из речных рыб.

Экспериментальная часть

В качестве объекта исследования выбраны шкуры речных рыб: сазана и судка.

Настоящий речной сазан, очень красив. Он покрыт необыкновенно крупной темно-желтозолотистой чешуей, которая на спине тем нее, с синеватым оттенком, а на брюхе светлее. С первого взгляда сазан, особенно молодой, имеет довольно большое
сходство с карасем, но он не так высок в спине (вышина тела только вдвое более толщины), толще и
длиннее и сразу отличается от последнего своими 4
толстыми и короткими усиками на желтых губах,
почти таких, же подвижных, как у леща; усики эти
сидят попарно с каждой стороны и оканчиваются
кругловатыми, плоскими головками.

Судак - стайная хищная рыба. Тело продолговатое, сжатое с боков, темно-зеленое на спине, перламутровое с ясно различимыми буро-черными верти-

кальными полосами на боках (обычно их 8-10 штук), светлое с брюшной части. Такая известная всем окраска делает судака легко узнаваемой рыбой. Плавники у него с налетом желтизны и рядами темных пятен, в большой части расположены острые клыковидные зубы, выдающие явного хищника, между которыми находятся еще и мелкие. Иногда встречаются очень темные судаки, после нереста также некоторые судаки могут принимать более темный цвет.

По величине судак занимает 1-е место в своем отряде. Обычно они достигают нескольких килограммов, в крупных реках, как правило, водятся рыбы более крупные, иногда могут попадаться прямо-таки гигантские экземпляры массой до 20 кг и более.

Режим плазменной обработки регулировали путем изменения силы тока, напряжения, давления в разрядной камере, длительности обработки, расхода плазмообразующего газа [1].

В сырье, после плазменной обработки и после каждого жидкостного процесса определяли температуру сваривания шкур речных рыб.

Результаты и их обсуждение

Для изучения влияния неравновесной низкотемпературной плазмы (ННТП) на структуру дермы речных рыбых шкур сазана и судака мокросоленого способа консервирования, проводили подготовительные и дубильные процессы по следующей схеме:

- 1. обработка ННТП в исследуемых режимах;
- 2. отмока обезжиривание с ПАВ;
- 3. промывка на проточной воде;
- 4. мездрение и удаление чешуи;
- 5. золение в щелочном растворе;
- 6. промывка на проточной воде;
- 7. обеззоливание сульфатом аммония;
- 8. мягчение протосубтилином Г-3Х;
- 9. пикелевание солью и кислотой;
- 10. хромирование солями хрома;
- 11. растительное дубление с использованием квебрахо.

Критерием влияния неравновесной низкотемпературной плазмы на структуру дермы в процессе ее выделки выбран показатель температура сваривания, который является косвенным показателем разделения структуры и ее сохранности.

На основании ранее проведенных работ на кафедре ПНТВМ, в работе использованы два режима [2]. Результаты исследования представлены в табл. 1.

Таблица 1 - Изменение температуры сваривания образцов из шкур сазана и судака в процессах производства кожи

Режимы	Образцы из шкур			Образцы из шкур		
плазменной	сазана			судака		
обра-ботки	Температура сваривания, °С					
	до отмоки	винэп	после дубления	до отмоки	иосле зо-	после дубления
U=4 кВ I=0,55A t=3 мин газ- аргон G=0,04 г/с P=26,6Па	61,5	57	89	57	49	78
U=4,5 кВ I=0,62A t=3 мин газ- аргон G=0,04 г/с P=26,6Па	61	58	88,5	57,5	47	75
Контрольный образец без НТП	60	55	86	55	53	72

Анализируя полученные данные, представленные в табл. 1, можно отметить, что температура сваривания исследуемых образцов после обработки неравновесной низкотемпературной плазмой повышается по сравнению с контрольными образцами у шкур сазана после процесса дубления на 2,9-3,5%, а у шкуры судака на 4,2-8,3% в зависимости от режима плазменной обработки. Предполагается, что разница в повышении температуры сваривания дермы у разных видов речных рыб связана с толщиной шкурки, это требует дополнительного подбора режима обработки ННТП (увеличения времени воздействия). Снижение температуры сваривания у шкур сазана и судака после процесса золения по сравнению с температурой сваривания мокросоленого сырья говорит о влиянии щелочного раствора в процессе золения на изменение структуры дермы. В результате обработки происходит разделение дермы на более мелкие структурные элементы, вследствие чего освобождаются активные центры белка, которые в процессе дубления, взаимодействуя с дубящими соединениями хрома способствуют повышению температуры сваривания полуфабриката.

Для наглядности и подтверждения влияния плазмы на структуру дермы исследуемых рыбьих

шкур были сделаны микрофотографии срезов полуфабрикатов из шкур сазана и шкур судака, обработанных плазме и без нее. Микрофотографии срезов представлены на рис. 1, 2, 3, 4.

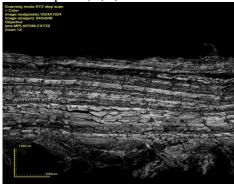


Рис. 1 - Микрофотографии среза шкуры сазана после процесса дубления без обработки ННТП

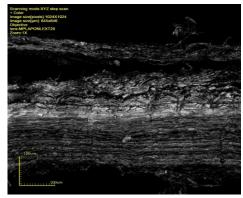


Рис. 2 - Микрофотографии среза шкуры сазана после процесса дубления с обработкой ННТП

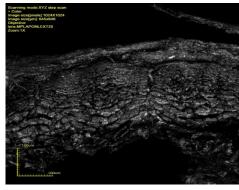


Рис. 3 - Микрофотографии среза шкуры судака после процесса дубления без обработки ННТП

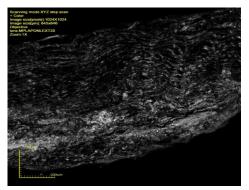


Рис. 4 - Микрофотографии среза шкуры судака после процесса дубления с обработкой ННТП

На всех микрофотографиях (рис.1, 2, 3, 4) можно отметить, что глубокий слой дермы шкуры сазана и судака состоит из волнообразных пучков коллагеновых волокон. При сравнении структуры (рис. 1 и 2) срезов образцов шкуры сазана до и после плазменной обработки, видно, что структура образцов без обработки НТП укрупнена и имеет размытые арки. На рис.2 глубокий слой дермы шкур сазана после обработки НТП имеет более разделенную структуру и четкий арочный характер пучков коллагеновых волокон. Как отмечено в работе [3], именно такая организация глубокого слоя дермы в виде микроарок придает прочность кожевенному полуфабрикату из рыбьих шкур. В данной работе это подтверждается температурой сваривания, которая увеличивается после обработки плазмой (табл.1).

Аналогичное строение наблюдается и на рисунках 3 и 4, где представлены микрофотографии срезов шкуры судака после процесса дубления, без обработки и с обработкой НТП. Шкура судака, обработанная плазмой (рис.4) имеет упорядоченную структуру с более углубленным разделением дермы, что говорит о ее компактности и прочности.

Проведенные исследования позволяют сделать следующие выводы:

- 1) Неравновесная низкотемпературная плазма оказывает существенное влияние на упорядочение структурных элементов дермы, сохраняя аркатурное строение коллагеновых волокон.
- 2) Применение плазмы повышает температуру сваривания полуфабриката из шкур сазана и судака на 3,5 и 8,3% соответственно.

Литература

- 1. И.Ш. Абдуллин, В.П. Тихонова, Г.Р. Рахматуллина, Р.Ф. Ахвердиев, О.В. Артемьева, А.О. Фадеев Вестник Казанского технологического университета, 1, 8, 56-58 (2013)
- 2. И.Ш. Абдуллин, В.П. Тихонова, Г.Р. Рахматуллина, Р.Ф. Ахвердиев, Р.Н. Резванов Вестник Казанского технологического университета, 1, 20, 21-23 (2012)
- 3. А. Б. Киладзе. Товароведная характеристика и оценка показателей качества шкур атлантического лосося как нового вида кожевенного сырья: Автореф. дис. ... канд. техн. наук. М., 2006, 18с.

[©] И. Ш. Абдуллин - д.т.н., проф., зав. каф. плазмохимических и нанотехнологий высокомолекулярных материалов КНИТУ, abdullin_i@kstu.ru; В. П. Тихонова – к.т.н., доц. той же кафедры, tkim1@kstu.ru; Г. Р. Рахматуллина - д.т.н., проф. той же кафедры, Gulnaz-f@yandex.ru; Р. Ф. Ахвердиев – к.т.н., доц. каф. высшей математики КНИТУ, rust123@rambler.ru; О. В. Артемьева – студ. каф. плазмохимических и нанотехнологий высокомолекулярных материалов КНИТУ; Д. К. Низамова – студ. той же кафедры.