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A gradient dependence of the effective viscosity η for the concentrated solutions of the polystyrene in toluene at three 
concentrations ρ = 0,4·105; 0,5·105; 0,7·105 g/m3 correspondingly for the fourth fractions of the polystyrene with the 
average molar weights М = 5,1·104; 4,1·104; 3,3·104; 2,2·104 g/mole respectively has been experimentally investigated. For 
every pair of the values ρ and М a gradient dependence of the viscosity was studied at four temperatures: 25, 30, 35 
and 40°С. An effective viscosity of the melts of polystyrene was studied for the same fractions, but at the temperatures 
190, 200 and 210°С. The investigations have been carried out with the use of the rotary viscosimeter «Rheotest 2.1» under 
the different angular velocities ω of the working cylinder rotation. An analysis of the dependencies η(ω) permitted to mark the 
frictional ηf and elastic ηe components of the viscosity ant to study their dependence on temperature Т, concentration ρ and on 
the length of a chain N. It was determined, that the relative movement of the intertwined between themselves polymeric chains 
into mball, which includes into itself the all possible effects of the gearings, makes the main endowment into the frictional 
component of the viscosity. The elastic component of the viscosity ηе is determined by the elastic properties of the 
conformational volume of the mball of polymeric chains under its shear strain. The numerical values of the characteristic 
time and the activation energy of the segmental movement were obtained on the basis of the experimental data. In a case of a 
melt the value of E and ΔS*/R are approximately in two times more than the same values for the diluted and concentrated 
solutions of the polystyrene in toluene; this means that the dynamic properties of the polymeric chains in melt are 
considerably near to their values in polymeric matrix than in solutions. Carried out analysis and generalization of the 
obtained experimental data show that as same as for lowmolecular liquids the studying of the viscosity of polymeric solutions 
permits sufficient adequate to estimate the characteristic time of the segmental movement accordingly to which the coefficients 
of polymeric chains diffusion can be calculated in solutions and melt, in other words, to determine their dynamic 
characteristics. 

 
Ключевые слова: эффективная вязкость, фрикционный и упругий компоненты вязкости, клубок, сегментальная 

подвижность, энергия активации. 
 

Экспериментально исследована зависимость градиента эффективной вязкости η для концентрированных 
растворов полистирола в толуоле при трех концентрациях ρ = 0,4·105; 0,5·105; 0,7·105 г/м3 соответственно 
для четырех фракций полистирола со средними молярными массами М = 5,1·104; 4,1·104; 3,3·104; 2,2·104 г/моль 
соответственно. Для каждой пары значений ρ и М зависимость градиента вязкости изучалась при четырех 
температурах: 25, 30, 35 и 40°С. Эффективная вязкость расплавов полистирола была изучена для тех же 
фракций, но при температурах 190, 200 и 210°С. Исследования были проведены с использованием 
ротационного вискозиметра «Rheotest 2,1» при разных угловых скоростях ω вращения рабочего цилиндра. 
Анализ зависимостей η (ω) позволяет выделить фрикционный ηf и упругий компонент ηe вязкости и изучить их 
зависимость от температуры Т, концентрации ρ и длины цепи N. Было установлено, что относительное 
движение переплетенных между собой полимерных цепей в клубке дает основной вклад в фрикционную 
составляющую вязкости. Упругий компонент вязкости ηе определяется упругими свойствами 
конформационного объема клубка полимерных цепей при деформации сдвига. На основе экспериментальных 
данных были получены численные значения характеристического времени и энергии активации 
сегментального движения. В случае расплава значение Е и ΔS*/R примерно в два раза больше тех же значений 
для разбавленных и концентрированных растворов полистирола в толуоле; это означает, что динамические 
свойства полимерных цепей в расплаве значительно ближе значениям этих свойств в полимерной матрице, 
чем в растворах. Проведенный анализ и обобщение полученных экспериментальных данных показывает, что 
так же, как и для низкомолекулярных жидкостей, изучение вязкости полимерных растворов позволяет 
достаточно адекватно оценить характеристическое время сегментальной подвижности, соответственно 
которому коэффициенты диффузии полимерных цепей могут быть рассчитаны в растворах и расплаве, 
другими словами, чтобы определить их динамические характеристики. 
 

Introduction 

The viscosity  of polymeric solutions is an 
object of the numerous experimental and theoretical 
investigations generalized in ref. [14]. This is 
explained both by the practical importance of the 
presented property of polymeric solutions in a number 
of the technological processes and by the variety of the 
factors having an influence on the  value, also by a 
wide diapason (from 10–3 to 102 Pas) of the viscosity 
change under transition from the diluted solutions and 
melts to the concentrated ones. The all above said gives 

a great informational groundwork for the testing of 
different theoretical imaginations about the equilibrium 
and dynamic properties of the polymeric chains. 

It can be marked three main peculiarities for 
the characteristic of the concentrated polymeric 
solutions viscosity, namely: 

1. Measurable effective viscosity  for the 
concentrated solutions is considerable stronger than the 
 for the diluted solutions and depends on the velocity 
gradient g of the hydrodynamic flow or on the shear 
rate. 
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It can be distinguished [4] the initial 0 and the 
final  viscosities (0>), to which the extreme 
conditions g  0 and g   correspond respectively. 

Due to dependence of η on g and also due to 
the absence of its theoretical description, the main 
attention of the researches [4] is paid into, socalled, the 
most newton (initial) viscosity η0, which is formally 
determined as the limited value at g→0. Exactly this 
value η0 is estimated as a function of molar mass, 
temperature, concentration (in solutions). 

The necessity of the experimentally found 
values of effective viscosity extrapolation to «zero» 
shear stress doesn’t permit to obtain the reliable value of 
η0. This leads to the essential and far as always easy 
explained contradictions of the experimental results 
under the critical comparison of data by different 
authors. 

2. Strong power dependence of  on the length N 
of a polymeric chain and on the concentration  (g/m3) of 
a polymer in solution exists:  N~  with the indexes α 

= 5  7,  = 3,3  3,5, as it was shown by authors [4]. 
3. It was experimentally determined by authors 

[1, 5] that the viscosity  and the characteristic 
relaxation time t* of the polymeric chains into 
concentrated solutions and melts are characterized by 
the same scaling dependence on the length of a chain: 

 Nt ~~       (1) 

with the index  = 3,4. 
Among the numerous theoretical approaches to 

the analysis of the polymeric solutions viscosity 
anomaly, i. e. the dependence of  on g, it can be 
marked the three main approaches. The first one 
connects the anomaly of the viscosity with the influence 
of the shear strain on the potential energy of the 
molecular kinetic units transition from the one 
equilibrium state into another one and gives the analysis 
of this transition from the point of view of the absolute 
reactions rates theory [6]. However, such approach 
hasn't take into account the specificity of the polymeric 
chains; that is why, it wasn't win recognized in the 
viscosity theory of the polymeric solutions. In 
accordance with the second approach the polymeric 
solutions viscosity anomaly is explained by the effect of 
the hydrodynamic interaction between the links of the 
polymeric chain; such links represent by themselves the 
«beads» into the «necklace» model. Accordingly to this 
effect the hydrodynamic flow around the presented 
"bead" essentially depends on the position of the other 
«beads» into the polymeric ball. An anomaly of the 
viscosity was conditioned by the anisotropy of the 
hydrodynamic interaction which creates the 
orientational effect [7, 8]. High values of the viscosity 
for the concentrated solutions and its strong gradient 
dependence cannot be explained only by the effect of 
the hydrodynamic interaction. 

That is why the approaches integrated into the 
conception of the structural theory of the viscosity were 
generally recognized. In accordance with this theory the 
viscosity of the concentrated polymeric solutions is 
determined by the quasi–net of the linkages of twisted 
between themselves polymeric chains and, therefore, 

depends on the modulus of elasticity E of the quasi–net 
and on the characteristic relaxation time t* [12]: 

*tE       (2) 

It is supposed, that the E is directly 
proportional to the density of the linkages assemblies 
and is inversely proportional to the interval between 
them along the same chain. An anomaly of the viscosity 
is explained by the linkages assemblies' density 
decreasing at their destruction under the action of shear 
strain [9], or by the change of the relaxation spectrum 
[10], or by the distortion of the polymer chain links 
distribution function relatively to its center of gravity 
[11]. A gradient dependence of the viscosity is 
described by the expression [11]: 

       gtf 0
   (3) 

It was greatly recognized the universal scaling 
ratio [1, 5]: 

  gtf0      (4) 

in which the dimensionless function   )x(fgtf *   has 

the asymptotes f(0) = 1, f(x)x>>1 = x–,  = 0,8. 
Hence, both expressions (3) and (4) declare the 

gradient dependence of  by the function of the one 
non–dimensional parameter gt*. However, under the 
theoretical estimation of  and t* as a function of N 
there are contradictions between the experimentally 
determined ratio (1) and  = 3,4. Thus, the analysis of 
the entrainment of the surrounding chains under the 
movement of some separated chain by [12] leads to the 
dependencies 53,N~  but 54,* N~t . At the analysis 

[13] of the self–coordinated movement of a chain 
enclosing into the tube formed by the neighbouring 
chains it was obtained the 3N~ , 4N~t* . The 

approach in [14] which is based on the conception of the 
reptational mechanism of the polymeric chain 
movement gives the following dependence 3Nt~ * . 

So, the index  = 3,4 in the ratio (1) from the point of 
view of authors [2] remains by one among the main 
unsolved tasks of the polymers' physics. 

Summarizing the above presented short review, 
let us note, that the conception about the viscosity–
elastic properties of the polymeric solutions accordingly 
to the Maxwell's equation should be signified the 
presence of two components of the effective viscosity, 
namely: the frictional one, caused by the friction forces 
only, and the elastic one, caused by the shear strain of 
the conformational volume of macromolecules. But in 
any among listed above theoretical approaches the shear 
strain of the conformational volumes of macromolecules 
was not taken into account. The sustained opinion by 
authors [34] that the shear strain is visualized only in 
the strong hydrodynamic flows whereas it can be 
neglected at little g, facilitates to this fact. But in this 
case the inverse effect should be observed, namely an 
increase of  at the g enlargement. 

These contradictions can be overpassed, if to 
take into account [15, 16], that, although at the velocity 
gradient of hydrodynamic flow increasing the external 
action leading to the shear strain of the conformational 
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volume of polymeric chain is increased, but at the same 
time, the characteristic time of the external action on the 
rotating polymeric ball is decreased; in accordance with 
the kinetic reasons this leads to the decreasing but not to 
the increasing of the shear strain degree. Such analysis 
done by authors [1517] permitted to mark the 
frictional and the elastic components of the viscosity 
and to show that exactly the elastic component of the 
viscosity is the gradiently dependent value. The elastic 
properties of the conformational volume of polymeric 
chains, in particular shear modulus, were described 
early by authors [1819] based on the self–avoiding 
walks statistics (SAWS). 

Here presented the experimental data 
concerning to the viscosity of the concentrated solutions 
of styrene in toluene and also of the melt and it is given 
their interpretation on the basis of works [1519]. 

 

Experimental data and starting positions 
 

In order to obtain statistically significant 
experimental data we have studied the gradient 
dependence of the viscosity for the concentrated 
solution of polystyrene in toluene at concentrations 
0,4105; 0,5105 and 0,7105 g/m3 for the four fractions of 
polystyrene characterizing by the apparent molar 
weights M = 5,1104; M = 4,1104; M = 3,3104 and M = 
2,2104 g/mole. For each pair of values  and M the 
gradient dependence of the viscosity has been studied at 
fourth temperatures 25 0C, 30 0C, 35 0C and 40 0C. 

The experiments have been carried out with the 
use of the rotary viscometer RHEOTEST 2.1 equipped 
by the working cylinder having two rotary surfaces by 
diameters d1 = 3,410–2 and d2 = 3,910–2 m. 

 

Results and discussion: concentrated 
solutions 

 

Initial statements 
Typical dependences of viscosity η of solution 

on the angular velocity  (turns/s) of the working 
cylinder rotation are represented on Fig. 13. Generally 
it was obtained the 48 curves of (). 

For the analysis of the experimental curves of 
() it was used the expression [15, 20]: 

 
      bbef  exp1exp1  (5) 

 
in which η is the measured viscosity of the solution at 
given value ω of the working cylinder velocity rate; ηf, 
and ηe are frictional and elastic components of η; 

 mv ttb //      (6) 

where 
mt  is the characteristic time of the shear strain of 

the conformational volume for mball of intertwined 

polymeric chains; 
vt  is the characteristic time of the 

external action of gradient rate of the hydrodynamic 
flow on the mball. 

The notion about the mball of the intertwined 
polymeric chains will be considered later. 

The shear strain of the conformational volume 
of m–ball and its rotation is realized in accordance with 

the reptational mechanism presented in ref. [2], i. e. via 
the segmental movement of the polymeric chain, that is 

why 
*
mt  is also the characteristic time of the own, i. e. 

without the action g, rotation of m–ball [17]. 

 

Fig. 1 � Experimental (points) and calculated in 
accordance with the equation (5) (curves) 
dependencies of the effective viscosity on the rotation 
velocity of the working cylinder: ρ = 4.0·105 g/m3, M 
= 4.1·104 g/mole, T = 25 ÷ 40 0C 

 
The expression (5) leads to the two asymptotes: 

ef    at 1/ b  

f   at 1/ b  
So, it is observed a general regularity of the 

effective viscosity dependence on the rotation velocity 
ω of the working cylinder for diluted, concentrated 
solutions and melts. Under condition, that 1/ b , 
that is at 0 , the effective viscosity is equal to a 
sum of the frictional and elastic components of the 
viscosity, and under condition   the measurable 
viscosity is determined only by a frictional component 
of the viscosity. 

In accordance with eq. (5) the effective 
viscosity () is a function on three parameters, namely 

f , e  and b. They can be found on a basis of the 

experimental values of () via the optimization 
method in program ORIGIN 5.0. As an analysis showed, 

the numerical values of f are easy determined upon a 

plateau on the curves () accordingly to the condition 
1/b  (see Figures 13). However, the 

optimization method gave not always the correct values 
of e  and b. There are two reasons for this. Firstly, in a 

field of the 0  the uncertainty of () 
measurement is sharply increased since the moment of 
force registered by a device is a small. Secondly, in very 
important field of the curve transition () from the 
strong dependence of  on  to the weak one the 

parameters e  and b are interflowed into a composition 

e b, i. e. they are by one parameter. Really, at the 
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condition 1/b  decomposing the exponents into 
(5) and limiting by two terms of the row 


bb

exp 






 1 , we will obtained 2/bef   . 

Due to the above–mentioned reasons the optimization 
method gives the values of e  and b depending 

between themselves but doesn't giving the global 
minimum of the errors functional. That is why at the 
estimation of e  and b parameters it was necessary 

sometimes to supplement the optimization method with 
the «manual» method of the global minimum search 

varying mainly by the numerical estimation of e . 

 
Fig. 2 - Experimental (points) and calculated in 
accordance with the equation (5) (curves) 
dependencies of the effective viscosity on the rotation 
velocity of the working cylinder: ρ = 5.0·105 g/m3, M 
= 5.1 ÷ 2.2·104 g/mole, T = 25 0C 

 
Fig. 3 - Experimental (points) and calculated in 
accordance with the equation (5) (curves) 
dependencies of the effective viscosity on the rotation 
velocity of the working cylinder: ρ = 4.0·105  7.0·105 
g/m3, M = 3.3·104 g/mole, T = 25 0C 
 

As we can see from the Figures 13, calculated 
curves η(ω) accordingly to the equation (5) and found in 
such a way parameters ηf, ηe and b, are described the 
experimental values very well. 

The results of ηf, ηe and b numerical 
estimations for the all 48 experimental curves η(ω) are 
represented in Table 1. The meansquare standard 
deviations of the ηf, ηe and b calculations indicated on 
the Figures. 

A review of these data shows that the all three 
parameters are the functions on the concentration of 
polymer into solution, on the length of a chain and on 
the temperature. But at this, the e  and 

f  are 

increased at the  and M increasing and are decreased at 
the T increasing whereas the b parameter is changed 
into the opposite way. The analysis of these 
dependencies will be represented further. Here let us 
present the all needed for this analysis determinations, 
notifications and information concerning to the 
concentrated polymeric solutions. 

Investigated solutions of the polystyrene in 
toluene were concentrated; since the following 
condition was performing for them: 

  ,     (7) 

where   is a critical density of the solution per 

polymer corresponding to the starting of the polymeric 
chains conformational volumes overlapping having into 

diluted solution  *   the conformation of Flory 

ball by the radius 
5/3aNRf  ,     (8) 

here a is a length of the chain's link. It's followed from 

the determination of 
*  

3
0

3* // fAfA RNNMRNM  ,   (9) 

where M0 is the molar weigh of the link of a chain. 
Taking into account the eq. eq. (8) and (9) we have: 

5/4
0

*  N ,   (10) 

where 

ANaM 3
00 /    (11) 

can be called as the density into volume of the 
monomeric link. 

In accordance with the SARWS [19] the 
conformational radius Rm of the polymeric chain into 
concentrated solutions is greater than into diluted ones 
and is increased at the polymer concentration   

increasing. Moreover, not one, but m macromolecules 
with the same conformational radius are present into the 
conformational volume 3

mR . This leads to the notion of 

twisted polymeric chains m–ball for which the 
conformational volume 3

mR  is general and equally 

accessible. Since the m–ball is not localized with the 
concrete polymeric chain, it is the virtual, i. e. by the 
mathematical notion. 

It is followed from the SARWS [19]: 
5/1mRR fm     (12) 

  2151  m  at   , (13) 

thus, it can be written 

  21
0aNRm    (14) 
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Table 1 - Optimization parameters ηf, ηe and b in equation (5) 

ρ·10–5, g/m3 4,0 5,0 7,0 

T, 0C 
M·104 
g/mole 

5,1 4,1 3,3 2,2 5,1 4,1 3,3 2,2 5,1 4,1 3,3 2,2 

25 

ηf·, Pa·s 0,35 0,19 0,16 0,06 1,11 0,69 0,43 0,36 6,50 2,66 2,64 0,86 

ηe, Pa·s 1,40 0,73 0,33 0,09 2,50 1,10 0,87 0,35 7,60 3,75 2,37 1,50 

b·103, s–1 
1,15 3,37 4,20 32,3 1,66 1,02 2,91 7,31 0,36 0,76 1,50 2,44 

30 

ηf·, Pa·s 0,31 0,17 0,14 0,05 1,00 0,62 0,36 0,24 4,95 2,11 2,03 0,68 

ηe, Pa·s 0,95 0,57 0,25 0,06 1,30 0,76 0,52 0,32 4,05 2,21 1,86 1,00 

b·103, s–1 
1,38 4,30 5,90 35,0 2,23 1,80 3,14 8,69 0,72 0,83 1,70 2,65 

35 

ηf·, Pa·s 0,19 0,13 0,11 0,04 0,68 0,50 0,26 0,19 4,07 1,85 1,45 0,43 

ηe, Pa·s 0,60 0,39 0,21 0,05 0,90 0,35 0,23 0,22 3,50 1,80 1,59 0,79 

b·103, s–1 
3,67 5,80 6,37 49,0 2,41 3,56 4,60 9,10 0,88 0,96 1,93 3,20 

40 

ηf·, Pa·s 0,17 0,12 0,10 0,04 0,56 0,42 0,22 0,17 2,91 1,46 0,98 0,27 

ηe, Pa·s 0,40 0,19 0,13 0,03 0,65 0,29 0,15 0,12 2,01 1,39 1,19 0,57 

b·103, s–1 5,35 6,60 6,90 73,9 2,67 5,60 5,60 16,8 1,33 1,41 2,27 4,24 
 

 
The shear modulus   for the m–ball was 

determined by the expression [19]: 
2

0
3

36.1 












aN

RT

A

  (15) 

and, as it can be seen, doesn't depend on the length of a 
chain into the concentrated solutions. 

Characteristic time 
*
mt  of the rotary movement 

of the m–ball and, respectively its shear, in accordance 
with the prior work [17] is equal to 

mmm LNt 



5.2

0

4.3

7

4








   (16) 

Let us compare the *
mt  with the characteristic 

time *
ft  of the rotary movement of Flory ball into 

diluted solution [17]: 

fff LNt 4.1

7

4
 .  (17) 

In these expressions m  and 
f  are 

characteristic times of the segmental movement of the 
polymeric chains and mL  and 

fL are their form factors 

into concentrated and diluted solutions respectively. Let 
us note also, that the expressions (16) and (17) are self–
coordinated since at *   the expression (16) 

transforms into the eq. (17). The form factors 
mL  and 

fL  are determined by a fact how much strong the 

conformational volume of the polymeric chain is strained 
into the ellipsoid of rotation, flattened or elongated one as 
it was shown by author [21]. 

Frictional component of the effective viscosity 
In accordance with the data of Table 1 the 

frictional component of the viscosity f strongly 

depends on a length of the polymeric chains, on their 
concentration and on the temperature. The all spectrum 
of f dependence on N,   and T we will be 

considered as the superposition of the fourth movement 
forms giving the endowment into the frictional 
component of the solution viscosity. For the solvent 
such movement form is the Brownian movement of the 
molecules, i. e. their translation freedom degree: the 
solvent viscosity coefficient 

s  will be corresponding to 

this translation freedom degree. The analogue of the 
Brownian movement of the solvent molecules is the 
segmental movement of the polymeric chain which is 
responsible for its translation and rotation movements 
and also for the shear strain. The viscosity coefficient 

ms  will be corresponding to this segmental movement 

of the polymeric chain. 
Under the action of a velocity gradient g of the 

hydrodynamic flow the polymeric m–ball performs the 
rotary movement also giving the endowment into the 
frictional component of the viscosity. In accordance 
with the superposition principle the segmental 
movement and the external rotary movement of the 
polymeric chains will be considered as the independent 
ones. In this case the external rotary movement of the 
polymeric chains without taking into account the 
segmental one is similar to the rotation of m–ball with 
the frozen equilibrium conformation of the all m 
polymeric chains represented into m–ball. This 
corresponds to the inflexible Kuhn's wire model [22]. 
The viscosity coefficient 

pm  will be corresponding to 

the external rotating movement of the m–ball under the 
action of g. The all listed movement forms are enough 
in order to describe the diluted solutions. However, in a 
case of the concentrated solutions it is necessary to 
embed one more movement form, namely, the 
transference of the twisted between themselves 
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polymeric chain one respectively another in m–ball. 
Exactly such relative movement of the polymeric chains 
contents into itself the all possible linkages effects. 
Accordingly to the superposition principle the 
polymeric chains movement does not depend on the 
above–listed movement forms if it doesn't change the 
equilibrium conformation of the polymeric chains in m–
ball. The endowment of such movement form into 

f  

let us note via pz . 

Not all the listed movement forms give the 
essential endowment into the 

f , however for the 

generality let us start from the taking into account of the 
all forms. In such a case the frictional component of a 
viscosity should be described by the expression: 

  pzpmsmsf  )1( ,         (18) 

or 
  spzpmsmsf  ,           (19) 

here   is the volumetric part of the polymer into 

solution. It is equal to the volumetric part of the 
monomeric links into m–ball; that is why it can be 
determined by the ratio: 

3
mARNNV ,   (20) 

in which 

V  is the partial–molar volume of the 

monomeric link into solution. 
Combining the eq. eq. (9)–(14) and eq. (20) we 

will obtain: 

0MV  .   (21) 

The ratio of 

VM 0

 should be near to the 

density m  of the liquid monomer. Assuming of this 

approximation, mV/M 


0  we have: 

m  .   (22) 

At the rotation of m–ball under the action of g 
the angular rotation rate for any polymeric chain is the 
same but their links depending on the remoteness from 
the rotation center will have different linear movement 
rates. Consequently, in m–ball there are local velocity 

gradients of the hydrodynamic flow. Let mg  

represents the averaged upon m–ball local velocity 
gradient of the hydrodynamic flow additional to g. 
Then, the tangential or strain shear   formed by these 

gradients mg  and g  at the rotation movement of m–

ball in the medium of a solvent will be equal to: 
 ms gg  .   (23) 

However, the measurable strain shear 
correlates with the wellknown external gradient g that 
gives another effective viscosity coefficient: 

gpm     (24) 

Comparing the eq. (23) and eq. (24) we will 
obtain 

ggmsspm /  .  (25) 

Noting 

ggmspm /0    (26) 

instead of the eq. (19) we will write 
  pzpmsmsf  0  (27) 

The endowment of the relative movement of 
twisted polymeric chains in m–ball into the frictional 
component of the viscosity should be in general case 
depending on a number of the contacts between 
monomeric links independently to which polymeric 
chain these links belong. That is why we assume: 

2~  pz .   (28) 

The efficiency of these contacts or linkages let us 
estimate comparing the characteristic times of the 

rotation (shear) of m–ball into concentrated solution 
*
mt  

and polymeric ball into diluted solution *
ft  determined 

by the expressions (16) and (17). 
Let's note that in accordance with the 

determination done by author [17] *
mt  is the 

characteristic time not only for m–ball rotation, but also 

for each polymeric chain in it. Consequently, *
mt  is the 

characteristic time of the rotation of polymeric chain 
twisted with others chains whereas *

ft  is the 

characteristic time of free polymeric chain rotation. The 
above–said permits to assume the ratio *

f
*
m t/t  as a 

measure of the polymeric chains contacts or linkages 
efficiency and to write the following in accordance with 
the (16) and (17): 

   fmfpz LLNt 5.2
0

2**
mt~         (29) 

Taking into account the (22) and combining the 
(28) and (29) into one expression we will obtain: 

25.2

0

20



















m
pzpz N





   (30) 

Here the coefficient of proportionality 0
pz  includes the 

ratio 
ffmm L/L  , which should considerably weaker 

depends on   and N that the value pz . 

Substituting the (30) into (27) with taking into 
account the (22) we have: 

mm
pzpmsmsf N


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




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25.2

0

200         (31) 

Let us estimate the endowment of the separate 
terms in eq. (31) into f . In accordance with Table 1 

under conditions of our experiments the frictional 
component of the viscosity is changed from the minimal 
value  410–2 Pas to the maximal one  6,5 Pas. 
Accordingly to the reference data the viscosity 
coefficient 

s  of the toluene has the order 510–4 Pas. 

The value of the viscosity coefficient 
ms  representing 

the segmental movement of the polymeric chains 
estimated by us upon 

f  of the diluted solution of 

polystyrene in toluene consists of the value by 510–3 
Pas order. Thus, it can be assumed 

sm , 
fs    and 

it can be neglected the respective terms in eq. (31). With 
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taking into account of this fact, the eq. (31) can be 
rewritten in a form convenient for the graphical test: 

25.2

0

200



















m
pzpm

m
f N








 .          (32) 

On Fig. 4 it is presented the interpretation of 
the experimental values of f  into coordinates of the 

equation (32).  

 
Fig. 4 - An interpretation of the experimental data of 
ηf in coordinates of the equation (32) 
 

At that, it were assumed the following values: 
M = 104,15 g/mole, a = 1,8610–10 m under 
determination of 

0  accordingly to eq. (11) and 
6109060  ,m  g/m3 for liquid styrene. As we can, the 

linear dependence is observed corresponding to eq. (32) 
at each temperature; based on the tangent of these 
straight lines inclination (see the regression equations 
on Fig. 4) it were found the numerical values of 0

pz , the 

temperature dependence of which is shown on Fig. 5 
into the Arrhenius' coordinates. 

It is follows from these data, that the activation 
energy pzE  regarding to the movement of twisted 

polymeric chains in toluene is equal to 39,9 kJ/mole. 
It can be seen from the Fig. 4 and from the 

represented regression equations on them, that the 
values 0

pm  are so little (probably, 100 ,pm   Pas) 

that they are located within the limits of their estimation 
error. This, in particular, didn't permit us to found the 
numerical values of the ratio g/gm . 

So, the analysis of experimental data, which 
has been done by us, showed that the main endowment 
into the frictional component of the effective viscosity 
of the concentrated solutions "polystyrene in toluene" 
has the separate movement of the twisted between 
themselves into m–ball polymeric chains. Exactly this 
determines a strong dependence of the f  on 

concentration of polymer into solution  55,
f ~   and 

on the length of a chain  2N~f . 

 
Fig. 5 - Temperature dependence of the viscosity 
coefficient 0

pz  in coordinates of the Arrhenius 

equation 
 
Elastic component of the effective viscosity 
 
It is follows from the data of Table 1, that the 

elastic component of viscosity e  is a strong increasing 

function on polymer concentration  , on a length of a 

chain N and a diminishing function on a temperature T.  
The elastic properties of the conformational 

state of the m–ball of polymeric chains are appeared in a 
form of the resistance to the conformational volume 
deformation under the action of the external forces. In 
particular, the resistance to the shear is determined by 
the shear modulus  , which for the m–ball was 

determined by the expression (15). As it was shown by 
author [17], the elastic component of the viscosity is 
equal to: 

mme Lt  .   (33) 

 
The factor of form mL  depends on the 

deformation degree of the conformational volume of a 
ball [17, 21]. 

Combining the (15) and (16) into (33) and 

assuming 1361
7

4
 ,  we will obtain 

mme LN
M

RT 



5.3

0

4.3

0




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


 . (34) 

 
Comparing the (16) and (34) we can see, that 

the known from the reference data ratio 43,*
me N~t~  

is performed but only for the elastic component of a 
viscosity. 

It is follows from the expression (34), that the 
parameters 

mL  and m  are inseparable; so, based on 

the experimental values of e (see Table 1) it can be 

found the numerical values only for the composition 

mmL  . The results of  mmL  calculations are 

represented in Table 2. In spite of these numerical 
estimations scattering it is overlooked their clear 
dependence on T, but not on   and N. 

Table 2 - Calculated values Lτ, τ/L, τ and L based on the experimental magnitudes ηe and b 
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ρ·10–5, g/m3 4,0 5,0 7,0 
τ·1010, s 

L T, 0C 
M·104, 
g/mole 

5,1 4,1 3,3 2,2 5,1 4,1 3,3 2,2 5,1 4,1 3,3 2,2 

25 

(Lτ)ηe·1010, s 2,63 3,14 2,72 2,99 1,71 1,72 2,61 4,25 1,15 1,29 1,57 4,00 
 

(τ/L)b·1010, s 3,25 1,81 2,54 0,89 1,17 3,43 1,91 2,06 1,98 1,86 1,38 2,29 
τ·1010, s 2,92 2,38 2,63 1,63 1,41 2,43 2,23 2,96 1,51 1,61 1,47 3,03 2,19 

L 0,90 1,32 1,03 1,83 1,21 0,71 1,17 1,44 0,76 0,86 1,07 1,32 1,13 

30 

(Lτ)ηe·1010, s 1,75 2,41 2,03 1,96 0,88 1,17 1,54 3,83 0,60 0,75 1,21 2,63 
 

(τ/L)b·1010, s 2,10 1,56 1,81 0,82 0,87 1,94 1,39 1,73 1,00 1,62 1,22 2,11 
τ·1010, s 2,17 1,94 1,92 1,27 0,88 1,51 1,46 2,57 0,78 0,98 1,21 2,56 1,59 

L 0,81 1,24 1,00 1,55 1,00 0,78 1,05 1,49 0,78 0,60 1,00 1,12 1,04 

35 

(Lτ)ηe·1010, s 1,09 1,62 1,67 1,61 0,60 0,53 0,67 2,58 0,51 0,60 1,02 2,04 
 

(τ/L)b·1010, s 1,01 1,16 1,67 0,59 0,79 0,98 1,21 1,65 0,81 1,35 1,09 1,75 
τ·1010, s 1,05 1,37 1,67 0,97 0,70 0,72 0,90 2,06 0,64 0,90 1,05 1,89 1,16 

L 1,04 1,18 1,00 1,65 0,87 0,73 0,74 1,25 0,79 0,67 0,97 1,08 1,00 

40 

(Lτ)ηe·1010, s 0,72 0,78 1,03 0,96 0,43 0,44 0,43 1,40 0,29 0,46 0,75 1,46 
 

(τ/L)b·1010, s 0,70 1,01 1,54 0,39 0,73 0,62 1,00 0,90 0,54 0,92 0,91 1,31 
τ·1010, s 0,71 0,89 1,26 0,61 0,56 0,52 0,66 1,12 0,40 0,65 0,83 1,38 0,80 

L 1,01 0,88 0,82 1,57 0,77 0,84 0,66 1,25 0,73 0,71 0,91 1,06 0,93 
               

Parameter b 
 
In accordance with the determination (6), the b 

parameter is a measure of the velocity gradient of 
hydrodynamic flow created by the working cylinder 

rotation, influence on characteristic time 
*
vt  of g  

action on the shear strain of the m–ball and its rotation 

movement. Own characteristic time 
*
mt  of m–ball shear 

and rotation accordingly to (16) depends only on  , N 

and T via m . 

It is follows from the experimental data (see 
Table 1) that the b parameter is a function on the all 
three variables  , N and T, but, at that, is increased at 

T increasing and is decreased at   and N increasing. In 

order to describe these dependences let us previously 
determine the angular rate 0

m  (s–1) of the strained m–

ball rotation with the effective radius 
mm LR  of the 

working cylinder by diameter d contracting with the 
surface: 

mmm LRd /0     (35) 

Here   is appeared due to the difference in the 

dimensionalities of 0
m  and  . 

Let us determine the 0
vt  as the reverse one 

0
m : 

dLRt mmv /0    (36) 

Accordingly to (36) 0
vt  is a time during which 

the m–ball with the effective radius mm LR  under the 

action of working cylinder by diameter d rotation will 
be rotated on the angle equal to the one radian. Let us 

note, that the *
mt  was determined by authors [17] also in 

calculation of the m–ball turning on the same single 
angle. 

Since in our experiments the working cylinder 
had two rotating surfaces with the diameters d1 and d2, 
the value 0

m  was averaged out in accordance with the 

condition d = (d1 + d2)/2; so, respectively, the value 0
vt  

was averaged out too: 

 )(/2 21
0 ddLRt mmv  . (37) 

So, 0
vt  is in inverse proportion to  ; therefore 

through the constant device it is in inverse proportion to 

g : 10 g~tv . However, as it was noted, in m–ball due 

to the difference in linear rates of the polymeric chains 
links it is appeared the hydrodynamic interaction which 
leads to the appearance of the additional to g  local 

averaged upon m–ball velocity gradient of the 
hydrodynamic flow mg . This local gradient mg  acts 

not on the conformational volume of the m–ball but on 
the monomeric framework of the polymeric chains (the 
inflexible Kuhn's wire model [22]). That is why the 

endowment of mg  into characteristic time *
vt  depends 

on the volumetric part   of the links into the 

conformational volume of m–ball, i. e. 

  1 m
*
v gg~t . 

Therefore, it can be written the following: 

mv

v

gg

g

t

t






0
,   (38) 

that with taking into account of eq. (37) leads to the 
expression 
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. (39) 

Combining the (16) and (39) into (6) we will 
obtain 
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.   (40) 

As we can see, here the parameters mL  and 

m  are also inseparable and can not be found 

independently one from another. That is why based on 
the experimental data presented in Table 1 it can be 
found only the numerical values of the ratio  bmm L/ . 

After the substitution of values a = 1,8610–10 m, d1= 
3,410–2 m, d2= 3,310–2 m we have 
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As it was marked, we could not estimate the 
numerical value of g/gm

 due to the smallness of the 

value 0
pm  lying in the error limits of its measuring. 

That is why, we will be consider the ratio g/gm  as the 

fitting parameter starting from the consideration that the 
concentrated solution for polymeric chains is more ideal 
than the diluted one and, moreover, the m–ball is less 
strained than the single polymeric ball. That is why, 

g/gm  was selected in such a manner that the factor of 

form mL  was near to the 1. This lead to the value 

g/gm  =25. 

The calculations results of  bmm L/  

accordingly to equation (41) with the use of 
experimental values from Table 1 and also the values 

g/gm  =25 are represented in Table 2. They mean that 

the  bmm L/  is a visible function on a temperature 

but not on a   and N. 

On a basis of the independent estimations of 

  mm L/  and  bmm L/  it was found the values of 

m  and mL , which also presented in Table 2. An 

analysis of these data shows that with taking into of 
their estimation error it is discovered the clear 

dependence of m  and L on T, but not on   and N. 

Especially clear temperature dependence is visualized 

for the values m

~
 , obtained via the averaging of m  at 

giving temperature for the all values of   and N (Table 

2). The temperature dependence of m

~
  into the 

coordinates of the Arrhenius' equation is presented on 
Figure 6. 

 
Fig. 6 - Temperature dependence of the average 
values of the characteristic time τ of the segmental 
movement of polymeric chain in coordinates of the 
Arrhenius equation 
 

Conclusions 
 

Investigations of a gradient dependence of the 
effective viscosity of concentrated solutions of 
polystyrene permitted to mark its frictional ηf and elastic 
ηe components and to study of their dependence on a 
length of a polymeric chain N, on concentration of 
polymer ρ in solution and on temperature Т. It was 

determined that the main endowment into the frictional 
component of the viscosity has the relative motion of 
the intertwined between themselves in mball polymeric 
chains. An efficiency of the all possible gearings is 
determined by the ratio of the characteristic times of the 
rotation motion of intertwined between themselves 

polymeric chains in mball 
mt  and Flory ball 

ft . This 

lead to the dependence of the frictional component of 

viscosity in a form 5.52~  Nf  for concentrated 

solutions, which is agreed with the experimental data. 
It was experimentally confirmed the determined 

earlier theoretical dependence of the elastic component 

of viscosity for concentrated solutions 5.44.3~  Ne , 

that is lead to the wellknown ratio 4.3~~ Ntme
 , 

which is true, however, only for the elastic component 
of the viscosity. On a basis of the experimental data of 
ηе and b it were obtained the numerical values of the 
characteristic time τm of the segmental motion of 
polymeric chains in concentrated solutions. As the 
results showed, τm doesn’t depend on N, but only on 
temperature. The activation energies and entropies of 
the segmental motion were found based on the average 

values of m~ .  

An analysis which has been done and also the 
generalization of obtained experimental data show, that 
as same as in a case of the lowmolecular liquids, an 
investigation of the viscosity of polymeric solutions 
permits sufficiently accurately to estimate the 
characteristic time of the segmental motion on the basis 
of which the diffusion coefficients of the polymeric 
chains in solutions can be calculated; in other words, to 
determine their dynamical characteristics. 
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