В. Е. Проскурина, Е. С. Шаброва, Ю. Г. Галяметдинов ВЛИЯНИЕ рН НА КИНЕТИКУ ФЛОКУЛЯЦИИ И УПЛОТНЕНИЕ ОСАДКОВ МЕТАЛЛОГИБРИДНЫМИ СИСТЕМАМИ В КОНЦЕНТРИРОВАННЫХ СУСПЕНЗИЯХ ОХРЫ

Ключевые слова: анионный, катионный сополимер акриламида, металлогибридная система, флокуляция, кинетика седиментации, флокулирующий эффект.

На модельной дисперсной системе — суспензии охры проанализировано влияние природы и концентрации металлогибридных систем на их флокулирующие показатели при варьировании рН среды. Отмечено возрастание флокулирующего эффекта для анионного гибридного образца с ростом его концентрации в области рН>8,2 по сравнению с катионным гибридным образцом, обусловленное влиянием рН на структуру и протяженность двойного электрического слоя. Установлена взаимосвязь между параметрами кинетики флокуляции и стадии уплотнения осадка.

Keywords: anionic, cationic acrylamide copolymer, metallhybrid system, flocculation, sedimentation kinetics, flocculating effect.

The effect of nature and concentration of metallhybrid systems to flocculation parameters at a variation pH was analyzed using a model dispersed system – ochre suspension. Increase of flocculating effect for an anion hybrid sample with growth of its concentration in area pH>8,2 in comparison with the cationic hybrid sample, caused by influence pH on structure and length of the electrical double layer was noted. The interrelation between parameters of kinetics of a flocculation and a stage of compacting of sediment was established.

Введение

Важнейшим параметром, управляющим коагуляционно-флокуляционными процессами при очистке промышленных сточных вод от дисперсных примесей является рН дисперсионной среды. Анализ ряда публикаций [1–4] убедительно показывает перспективность исследования синтеза. химических свойств и применения новейших типов функциональных материалов, называемых полимернеорганическими гибридными системами. Достоинством таких систем является возможность сочетания высокой химической стабильности неорганической гибрида составляющей люминесцентных и фоточувствительных свойств органического компонента, которые онжом варьировать в широком диапазоне [5-7]. Учитывая, что металлополимерные гибриды обладают широким спектром функциональности в характере воздействия на агрегативную и седиментационную устойчивость дисперсных систем (ДС), то при проектировании поведения дисперсий: расслоение, фракционирование взаимодействие размерам частиц, между компонентами системы важен анализ их флокулирующих свойств.

В данной работе на примере модельной \mathcal{LC} – суспензии охры в режиме стесненного оседания проведена оценка влияния рН дисперсионной среды на флокулирующие показатели металлогибридных систем.

Экспериментальная часть

При рассмотрении закономерностей флокуляции модельной дисперсной системой являлась суспензия охры марки "золотистая" Журавского месторождения Воронежской области (ТУ 301-10-019-90) со средним радиусом частиц ДФ \overline{R} = 9,25·10⁻⁶м и с плотностью – ρ = 2,7·10³ кг/м³.

В качестве катионного (К) полиакриламидного флокулянта (ПААФ) использовался статистический

сополимер акриламида (AA) с гидрохлоридом диметиламиноэтилметакрилата с $M=4,08\cdot10^6$ и $\beta=13,9$ мол.%, а анионным (A) ПААФ служил статистический сополимер AA с акрилатом натрия с $M=4,71\cdot10^6$ и $\beta=11,4$ мол.%, производимые фирмой SNF Floerger (Франция).

Кинетику седиментации суспензии охры изучали в режиме стесненного оседания при Сдф =8% по изменению положения подвижной границы раздела между осветленной и неосветленной частями мерного цилиндра объемом 2000 см³. pH создавалась введением в дисперсионные среды расчетных объемов 1N растворов HCl и KOH. Непосредственно перед проведением экспериментов расчетные количества разбавленных растворов гибридных образцов с концентрацией С=0.01% вводили в верхний, надосадочный слой жидкости. перемешивали десятикратным медленным опрокидыванием цилиндра и изучали кинетику седиментации суспензий.

Средний размер частиц и величину электрокинетического потенциала охры определяли методом динамического светорассеяния (ДРС) на приборе анализатор размера частиц и дзетапотенциала серии Zetasizer Nano-ZS (Malvern Instruments Ltd (Великобритания)). Анализатор оснащен гелий-неоновым лазером (633 нм, 4 мВт). Графическую интерпретацию результатов измерения получали с помощью программного обеспечения «DTS Application Software» компании Malvern Instruments для работы под управлением операционной системы Windows®.

Результаты и их обсуждение

Ранее, в работе [8] было оценено влияние рН среды на кинетические закономерности процесса флокуляции с участием гибридной полимернеорганической системы на основе катионного сополимера АА и коллоидного золя Al(OH)₃ в режиме свободного (нестесненного) оседания на

суспензии TiO₂. При повышении на порядок концентрации дисперсной фазы (ДФ), т.е. при переходе от свободного к стесненному оседанию должно усиливаться влияние рН на баланс сил притяжения и отталкивания между частицами ДФ. Для расширения круга модельных ДС нами была выбрана суспензия охры, ввиду наличия в ее структуре как отрицательных (за счет силанольных групп), так и положительных (создаваемых катионом железа) зарядов. При изменении рН среды меняются соотношения концентрации И разноименно заряженных элементов поверхности частиц ДФ, что при определенных рН может приводить даже к перезарядке частиц охры.

гибридных качестве полимернеорганических систем использовались образцы на основе коллоидного золя Mg(OH)₂ и катионного и анионного сополимеров АА, т.е. металлогибридные системы (ГК) и (ГА) соответственно. Коллоидный золь был получен методом химической конденсации по реакции: $2NaOH + MgCl_2 \rightarrow Mg(OH)_2\downarrow + 2NaCl$ (стабилизатор $MgCl_2$). Затем металлогибридные системы получали путем смешения водных растворов коллоидного золя с катионным и анионным сополимерами АА. При анализе экспериментальных данных рис. 1 прослеживается отчетливо выраженная тенденция ускорения процесса седиментации при переходе из нейтральной в щелочную и кислую области рН.

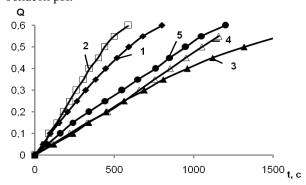


Рис. 1 — Кинетические кривые седиментации суспензии охры в средах с различными значениями рН: I-3; 2-4,7; 3-8,2; 4-10,9; 5-11,7

Полученный результат подтверждается экстремальным характером зависимости электрокинетического (ξ) потенциала от pH среды (табл. 1).

Таблица 1 – Влияние рН среды на величину ξпотенциала суспензии охры и размер частиц ДΦ

рН	ξ, мВ	R·10 ⁶ , м
3	+22	13,9
4,7	-4	14,6
8,2	-40	9,25
10,9	-28	13,3
11,7	-18	11,7

Снижение (по модулю) величины ξ-потенциала при pH<8,2 и при pH>8,2 хорошо согласуется с появлением различий в эффективных размерах R структурных элементов из частиц охры (табл. 1).

На рис.2 в качестве примера приведены кинетические кривые седиментации суспензии охры при изменении рН дисперсионной среды в присутствии металлогибридных систем при $C=11,2\cdot 10^{-4}\%$.

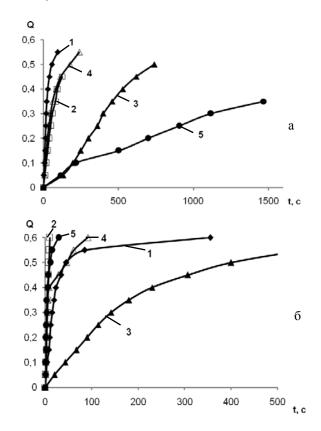


Рис. 2 — Кинетические кривые седиментации суспензии охры в присутствии металлогибридных систем (ГК) (а) и (ГА) (б) при $C = 11.2 \cdot 10^{-4}$ %. pH: I - 3; 2 - 4.7; 3 - 8.2; 4 - 10.9; 5 - 11.7

Переход от кинетических кривых седиментации к количественному параметру – флокулирующий эффект D осуществлялся по формуле [9]:

$$D = \frac{\overline{u_i}}{\overline{u_0}} - 1,$$

где $\stackrel{-}{\mathrm{u}_0}$, $\stackrel{-}{\mathrm{u}_i}$ — средние скорости седиментации (для создания идентичных условий при проведении сопоставительных оценок по скоростям седиментации в ДС все последующие расчеты проведены для фиксированных значений Q=0,4) анализируемых суспензий соответственно в отсутствие и при введении флокулирующих систем.

На рис. 3 (а, б) приведены концентрационные зависимости флокулирующего эффекта при варьировании рН в присутствии металлогибридных систем ГК и ГА. При анализе данных рис. 3 необходимо отметить существенно более высокие значения параметра D по охре в присутствии анионного гибридного образца ГА по сравнению с ГК, что обусловлено более высокой эффективностью анионного сополимера АА в процессе образования мостичных связей, а образец

ГК участвует в образовании «якорных» связей, не приводящих к росту размеров образующихся флокул. Наибольший флокулирующий эффект D отмечен для анионного гибридного образца ГА в области рН>8,2 (кривые 4, 5 рис. 3б). Этот результат объясняется тем, что в щелочной области рН возрастает степень нейтрализации щелочью сополимера АА с акрилатом увеличивается степень диссоциации И ионогенных групп. Концентрирование одноименных зарядов вдоль по цепи макромолекулы усиливает между ними электростатическое отталкивание и в результате увеличения эффективных размеров макромолекулярных клубков повышаются флокулирующие свойства металлогибридной системы ΓA.

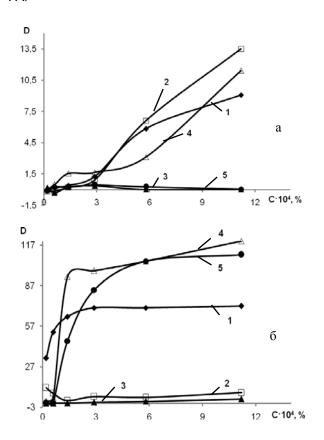


Рис. 3 — Зависимость флокулирующего эффекта D от концентрации металлогибридных систем (ГК) (а) и (ГА) (б) при различных рН: 1-3; 2-4,7; 3-8,2; 4-10,9; 5-11,7

Об особенностях процессов флокуляции в режиме стесненного оседания можно судить по установлению количественных корреляций между флокулирующим эффектом и плотностью осадка на стадии его уплотнения. Результаты опытов в присутствии тех же полимерных систем на стадии уплотнения осадка были проанализированы в области высоких значений Q (Q>0,6). Важной характеристикой осадка является его плотность ρ_{oc} , по величине которой можно судить о структуре осадка, степени его уплотнения и обезвоживания. Плотность осадка ρ_{oc} зависит от его массовой концентрации и плотности твердой фазы, входящей в состав осадка и рассчитывается по формуле [10]:

$$\rho_{oc} = \frac{m + \left(V_{oc} - \frac{m}{\rho}\right) \cdot \rho_0}{V_{oc}}$$

где ρ_0 — плотность воды (ρ_0 = 1,0·10³ кг/м³), ρ — плотность охры (ρ = 2,7·10³ кг/м³); m — масса навески порошка.

Объем осадка: $V_{oc} = (1-Q_{max})V_0$, где V_0 – рабочий объем суспензии в мерном цилиндре.

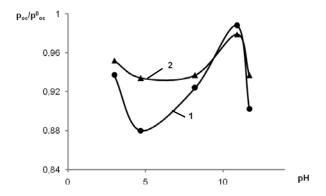


Рис. 4 — Зависимость отношения плотностей осадков p_{oc}/p_{oc}^0 от pH среды при введении металлогибридных систем: $I - \Gamma K$; $2 - \Gamma A$

На рис. 4 представлены зависимости отношения плотностей осадков p_{oc}/p_{oc}^0 (p_{oc}^0 – плотность осадка суспензии охры в отсутствие добавок) от рН среды в присутствии металлогибридных систем ГК и ГА. Для данных кривых характерен минимум в кислой области рН (рН=4,7), что в значительной мере связано с более высоким значением p^0_{oc} для данной области pH. Более низкие плотности осадков в системах с добавками ГК и ГА можно объяснить участием макромолекул сополимеров К и А в формировании флокул на первой стадии процесса. И хотя на заключительной стадии процесса уплотнения осадков происходит деформация и уплотнение флокул, однако более рыхлая ("дефектная") структура внутри локальных объемов частиц ДФ с адсорбировавшимися на них макромолекулами металлогибридных систем сохраняется и для области значений Q ~ Q_{max}.

В заключение необходимо отметить, что проанализировано влияние природы и концентрации металлогибридных систем на их флокулирующие показатели. Установлен экстремальный характер зависимости ξ-потенциала охры от рН среды. Отмечено возрастание флокулирующего эффекта для анионного гибридного образца с ростом его концентрации в области рН>8,2 по сравнению с катионным гибридным образцом. Установлена параметрами взаимосвязь между кинетики флокуляции стадии уплотнения осадка. Результаты эксперимента дают возможность прогнозировать эффективность и направленность седиментационных процессов участием металлогибридных систем.

Литература

- 1. *Lee, K.E.* Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review / Khai Ern Lee et al // Chemical Engineering Journal. 2012. V.203. P. 370–386.
- 2. *Проскурина, В.Е.* Моделирование процессов флокуляции с использованием гибридных полимер-неорганических наносистем / В.Е. Проскурина [и др.] // Вестник Казан. технол. ун-та.— 2012. —№ 12. С. 95-98.
- 3. *Проскурина*, *В.Е.* Синтез гибридных полимернеорганических наносистем и их флоккулирующие свойства / В.Е. Проскурина [и др.] // Вестник Казанского технологического университета. 2012. №22. С.55–57.
- Proskurina, V.E. Flocculation on nanohybrid polymer–inorganic nanosystems in gravity and centrifugal force fields / V.E. Proskurina et al. // Russian Journal of Applied Chemistry. 2013. V. 86. № 11. P. 1785–1790.
- 5. Maniruzzaman, M. Titanium dioxide-cellulose hybrid nanocomposite and its glucose biosensor application / M. Maniruzzaman et al // Materials Science and Engineering. –

- 2012. V.177. №7. P. 844-848.
- Lan, W. Characteristic of a novel composite inorganic polymer coagulant-PFAC prepared by hydrochloric pickle liquor / W. Lan et al // J. Hazard. Mater. – 2009. – V.162. P. 174–179.
- 7. *Yasir*, *Al-Ani*. Degradation of C.I. Reactive Blue 19 using combined iron scrap process and coagulation/flocculation by a novel Al(OH)₃–polyacrylamide hybrid polymer / Al-Ani Yasir et al // Journal of the Taiwan Institute of Chemical Engineers. 2012. №43. P. 942–947.
- 8. *Проскурина, В.Е.* Влияние pH на флокуляцию водносолевых суспензий TiO₂ гибридными полимернеорганическими наносистемами / В.Е. Проскурина [и др.] // Вестник Казанского технологического университета. 2013. №5. С.32–35.
- 9. *Мягченков, В.А.* Сополимеры акриламида с функцией флокулянтов: монография / В.А. Мягченков, В.Е. Проскурина. М-во образ. и науки РФ, КГТУ. Казань: КГТУ, 2011. 296с.
- 10. *Любарский, В.М.* Осадки природных вод и методы их обработки. М.: Стройиздат, 1980. 128c.

[©] В. Е. Проскурина - канд. хим. наук, доц. кафедры физической и коллоидной химии КНИТУ, v_proskurina@mail.ru; Е. С. Шаброва - студент КНИТУ, shabrova.93@mail.ru; Ю. Г. Галяметдинов - д-р хим. наук, проф., зав. каф. физической и коллоидной химии КНИТУ, yugal2002@mail.ru.