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DYNAMIC EQUATIONS OF CONTROLLED MECHANICA L SYSTEM
WITH REDUNDANT HOLONOMIC CONSTRAINTS
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Dynamic equations of motion for mechanical systems with regard to Lagrange’s equation of motion are discussed. The
case of redundant constraints and positive semidefinite mass matrix in obtaining the Lagrangian multipliers and the
constraint forces corresponding to a constraint equation based on a generalized inverse of a rectangular matrix and
Singular Value Decomposition (SV D) is detailed. Different ways of applying the generalized inverse of a matrix in
relation to obtaining an acceleration of a mechanical system on which a holonomic constraint is imposed is
investigated. It is established that there could be an infinite set of solutions for an acceleration and Lagrangian
multipliers of a dynamic system. The conditions that need to be satisfied for an equation of a mechanical system to have
a unique solution is also spelled out and ascertained by proof. Method of obtaining the generalized inverse of a matrix
is also discussed. A numerical example is given to show the application of the methods.
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KOOPOUHAMAX 8 CIyude 20NOHOMHbIX C6A3ell U 3HAKONOCMOAHHOU NOLONCUMENbHOU Mampuybl macc. Tlomyuenvl
muooicumenu Jlagpamsica u peakyuii €6ésa3u, coomeemcmeyiowue ypagHenuro ceszeil. Ilpednacaemcs anzopumm,
OCHOBAHHDIL HA NOCMPOEHUU 000OUEHHOU 0OPAMHOU NPAMOY2OIbHOU MAMPUYbL U CUHSYIAPHO20 pasnodicenust (SVD).
Hccenedosanvl pasnuunvie cnocobvl UCHONb306aHUA 0000WeHHOU 00pamHOU Mampuybl 0N NPUBEOEHUs YPASHEHUT
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ycKopenutl u MHodxcumenetl Jlazpandca OuHamuueckou cucmemul e asigemcs eouHcmeenuvim. Onpeoenenvl yCciosus
eouHcmeeHnocmu  pewienus. Ilpednoscen memoo nocmpoenus 00600weHnou obpamuol mampuysl. Ilpugooumcs

4UCI0801 NpUMED, ULTIOCMPUPYIOWULL NpUMeHeHUe Npedlazaemblx Memooos.

1. Introduction

Modeling motion of mechanical system can be
made in several equivalent ways. For instance,
Lagrange multipliers method, Null space method and
Magi’s method are some of them [1,2,3]. In each of this
methods a set of Differential-Algebraic-Equations
(DAE) results. If these set of DAE of motion does not
use explicitly the position and velocity equations
associated to the constraints, then it leads to the problem
of stability at the position and velocity level of the
constraints. The strategies generally used to overcome
this problem are the Coordinate Partitioning Method
[2], the Baumgarte’s Stabilization Method [4], the
Augmented Lagrangian formulation or Mass-orthogonal
projections of position and velocity vectors [5].

Moreover, in addition to the stability problems
that may happen while simulating constrained
mechanical systems, problems related to the presence of
redundant constraints is also unavoidable in practice. In
the presence of more equations than strictly needed the
Jacobian matrix becomes rank deficient. This can be
observed when some of the equations are dependent in
the remaining ones. This makes the leading matrix, for
example in Lagrangian Index one equation, singular.
The leading matrix can also be singular when the mass
matrix is singular. A Singular Mass matrices may
appear when more than six coordinates are used to

define the position of a rigid body in R’ [2].The
Jacobian matrix can also be rank deficient when the
mechanical system reaches a configuration in which
there is a sudden change in the number of degree of
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freedom. For instance, a slider crank mechanism [5]
reaches a singular configuration when both the two
links are at vertical position. In this position both links
overlap and the mechanism has not one but two degree
of freedom that corresponds to two possible motions
that the mechanism can undergo.

This paper presents a brief discussion on
modeling a mechanical system with Index one
Lagrange’s equation of motion in the presences of
redundant holonomic constraints. As the Index one
Lagrange’s equation of motion does not include the
position and velocity constraint equations explicitly, it
does not provide any solution for the constraint
violation problem. Therefore, a technique useable to
minimize the constraint violation errors is still required.
To this end Baumgarte’s method of stabilization is
included in the discussion.

The main purpose of this paper is to show the
application of Generalized Inverse of a matrix in finding
the acceleration, the Lagrangian multipliers and as a
result, the constraint forces of a mechanical system with
a holonomic constraint imposed. This is discussed based
on properties of Generalized Inverse of a Matrix and
Singular Value Decomposition. The advantage of this
method is that, it can handle singular mass matrices and
redundant constraints. That is, the mass matrix can in
general be assumed to be square symmetric and positive
semidefinite. The positive definiteness of the mass
matrix is not required in the application of this method.
Redundant constraints are handled in the solution of
system of equations of motion and the problems that
involve singular configurations and redundant



constraints, and other problems associated with
changing the number of degrees of freedom can be
managed using the method developed in this paper.

2. Constructing Equation of Motion for a
Holonomic Constrained Mechanical Systems

In this section we will discuss a general
approach of constructing equation of motion of a
mechanical system in which a holonomic constraint is
involved based on the literature.

T .
Let = [q1,q2,...,qn] be n generalized
coordinate of a system and suppose that the system is
subjected to m < 1 holonomic constraints given by:

®(q,t)=0. ()
Let L= L(q,Q) = T(q,Q)— V(q) be the Lagrangian
of the system where T = T(q,d) and V = V(q) are

respectively the kinetic and potential energy of the
system. Then the Lagrange’s equation of motion of the
system can be given by [3, 6, 7]:

d(oL) oL
A& ea=Q,,.
dt(aq] oq Pt T e

Where (), generalized external is force, and A is
The

2)

Lagrange’s
multibody
system can be written in the form [1,2,7]:

T(q,Q)=%qTM @) q.

where M=M (qQ is the mass matrix of the system

multiplier. kinetic energy of a

3)

which is assumed to be symmetric and positive definite
square matrix.

Since L=T —V we have:

HORIC

dt\aog) dtl a9
4
Then equation (2) can be written as:
M@+ A =L, +Q,, —Mqg (5)
where L, = %
aq
Putting Q = Lq + st - Mq equation (5) becomes:
MG+ A=Q. (6)

The position, velocity and acceleration vectors in
Equation (5) must satisfy the corresponding constraint

equations:
¢ @t)0, (7a)
¢=0,q+¢, =0 (7b)
Equation (7a) — (7c) and (6) together

constitutes 7+ m DAE of Index 3 [7] with g and A

as unknowns. However, if only equations (7c) and (6)
are considered, the following index 1 DAE system
equivalent to an ODE system is obtained: This system is
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said to be [2] Lagrange’s Index one system of dynamic

equations.
M (o) mm o
o, O [A] |G ’
where G=-@, -9 q
The system of differential equations (8)

presents a constraint stabilization problem. As only the
acceleration constraint equations have been imposed,
the positions and velocities provided by the integrator
suffer from a drift phenomenon. Some solutions to this
problem are the Baumgarte’s stabilization method [4]
and the mass orthogonal projections of position and
velocity vectors [2,5]. We will discuss Baumgarte’s
method of constraint stabilization. To secure
Baumgartes stabilization of the constraint equation we

replace [4] ¢ in equation 7c by:
$+a9+pe =0, ©)
Where @ and [ are appropriately chosen constants.
After replacing we obtain:
P 4=-0 @9+¢ PP -,a-9
Substituting
G=-a @ a+¢, Be-9,9-¢, ,
we obtain:
9,0=G (10)

Considering equations (6) and (10) we obtain the
equation of the dynamic system to be:

T .o

M (o) [d]_[Q

o, O [A] |G
Equation (11) constitutes m +n index one

Ordinary Differential Equations, with the required

values ¢ and A .But still after Baumgarte’s

stabilization method is applied to the system, there
could be a problem of redundant constraints and
singular mass matrices. Let us see the following
example that describes how singular mass matrix may
happen. A Singular Mass matrices may appear when
more than six coordinates are used to define the position

an

of a rigid body in R’ . When Euler parameters or
natural coordinates are used this is always the case.
With natural coordinates [2,9] the constant inertia
matrix of a rigid body requires that the body be defined
with two points and two unit vectors (or a similar
configuration, for instance with four non-coplanar
points). If this body has additional points and unit
vectors, the corresponding rows and columns of the
inertia matrix have null values, making this matrix
positive semidefinite. In the case of redundant
constraints in equation (1) the Jacobian matrix does not
have full rank. In this situation we can obtain the

resultant reaction force of the constraints ¢qT/1 but not
[2,9,10] each of the i# , £=1,2,... m Let us consider

the following two cases:



1. Assuming that M is positive definite and the
Jacobean Matrix ¢q has full rank, that is:

M=M"eR™, g, eR™",  ran(M)=n,

ran(g,) = m. Then the value of § from equation (6)

can be obtained to be:
g=M'Q-MTpA,

and substituting(12) into (10) we obtain
((qu’kpg))\ =pM'Q-G, (13)

(12)

which yields:
-1, T -1
A= [cqu cqu [cqu Q —G] . (14)
The value of A can be obtained from (14) and then

putting its value in (12) the corresponding value of ¢
can be obtained. That is:

o [MA _Mo" M 'oT Y Mf1h_

q - (pq ((Pq (Pq ) (pq

A, T 1, T 1
Mo, @M 0, )G

2. Assume that M is positive definite and the Jacobian
Matrix is rank Deficient.
As it is discussed above, redundant constraints in
equation (1) can be reflected by the fact that some of the

equations are dependent in the remaining ones. This
lack of equation independence in the system (1) may

(15)

lead to a rank deficiency in the Jacobian matrix ¢q and

an over constrained system of linear equations (more
equations than unknowns) which will not have a
solution that satisfy all the equations.

In such situations, suppose we need to find each of the

Lagrangian Multipliers /1#, M=12,... m and then

each of the constraint forces of a mechanical system.

That is, assuming that (ch‘ eR™" |
ran ((p; )=r <m and for any convenient vector, let
;A =H

The general solution, by the Minimum Norm
Solution method using Generalized Inverse of a matrix,

of[ 8]:
@ A=H,

is given by:

A= @ JH+- @y @l h,  an

where [ is n by n identity matrix and 7 e R™ is

(16)

arbitrary Lagrangian multiplier vector,

- ((p; )] ((p; ) represents the orthogonal projection

matrix in the null space of (IﬁqT .That is Equation (17) can

be decomposed [7,8] as:
A=A, +Nn (18)

where )‘0 = ((p; JH is the minimum norm solution
S T T T
that minimizes H(pq)\—HH2 and N=1- (9, ) (@ ;

is a vector in the kernel of ¢qT :
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With regard to (17) we have the following two cases:

a)If B= ¢qT has a full rank then, B* =B" (BB' )’
and hence equation (17) reduces to
A=A,=B'H=B" (BB" )'H, since 1 - B'B =
0. Therefore in this case we have a unique solution
A=A, which is called the pseudoinverse solution
[8].Note that, if B is a square matrix and has a full rank
then B'=B™' and in this case the nullspace of

T .
¢q contains only the zero vector.

b) If B is rank deficient we apply the method of SVD

in which case B'can be calculated as B =USV'
where U and V' are n by n and m by m square
orthogonal matrices respectively and S has the same
size as B and is 7 by m matrix. The non-square
matrix S 'has non-zero elements only on its diagonal
and therefore, the calculation of its generalized inverse
S™ is trivial [8]. Note that, SVD is based on a
theorem from linear algebra which says that a
rectangular matrix B can be broken down into the
product of three matrices - an orthogonal matrix U , a
diagonal matrix S, and the transpose of an orthogonal
matrix V. The theorem is usually presented something

like this: B, =U_S VI ,where
v'u=yv'v=I the columns of U are

orthonormal eigenvectors of BB’ | the columns of V'
are orthonormal eigenvectors of BB’ , and S is a
diagonal matrix containing the square roots of
eigenvalues from U or V' in descending order. The
generalized inverse of B is [7] B =VS*'U" where

the relation UT =U™; VT = V™" valid for orthogonal
matrices have been used and:

g _|Si 0
mxn 0 0

The sub-matrix Sl_l1 contains the reciprocal of
the non-zero singular values along the principal

diagonal. In this case, B is rank deficient, then
equation (16) has an infinite number of solutions given
by equation (17).

In summary:

1).When we apply the method discussed above to

Equation (13) assuming that ¢qT is rank deficient we

obtain A to be:

A= @M @, J @M'Q-G)}[I- (¢M'Q-G) ]
where 77 is an arbitrary Lagrangian multiplier. By
pressing on 7] we can obtain infinite solutions for
A Substituting 77 =0 we obtain the minimum norm
solution:

'Sis rectangular diagonal matrix, which is an m-by-n matrix
with only the entries of the form d;; possibly non-zero.



A= ((qu_1 ((pq j ) ((qu_1Q_G)
o 1, T -1

that minimizes H (@eM70, ) A-[o,MQ —GHZ
ii).We can obtain § from equation (15) as follows.
When we closely look at equation (15) we observe that

(cqu*1 @, § )" should exist for the values of § be
obtained. The existence may fail in case the Jacobian
matrix is rank deficient. In this instance one method to
obtain ¢ is to make use of the assumption that M is
positive definite that grantees the diagonalizability of

M.

Let the mass matrix M resulting from unconstrained
mechanical system be positive definite and the
acceleration of the unconstrained system be denoted by
§". Then we have " =M"Q and referring to
equation (15) we have:

=38 +M'oT M o7 1(G_ “nc) 19

q_q (pq ((‘pq (Pq ) (qu ( )
From the fact that M is positive definite we obtain

M=M">’M"? and hence M™'=M">M"2. Then
equation (19) becomes:
g=6" + M71/2M71/2(P; ((PqMA/zMA/z(p; )1((3 _ (pqqnc)(zo)
Putting F = (qu_V 2 equation (20) becomes

G=4" +M?FT FFT Y (G-9.4°) @D
From the properties of generalized inverse of a matrix
we have F' (FFT )'=F*. Hence equation (21)
becomes:

§=g" + M-V2F* (G _ (pqdnc)

It can be seen in (22) that the values of ¢ is

(22)

independent of whether the coefficient matrix in
equation (8) or (11) is rank deficient or not. Moreover,

F" can be calculated as explained above using SVD
method.

The next point will be on how to obtain M™% Since

M is assumed to be symmetric and positive definite [8]
it has a unique square root B, such that M = BB . In
order to find matrix B first we need to diagonalize

matrix M . That is, we need to find a matrix KX which

consists of the orthonormal eigenvectors of M and a
diagonal matrix D with its diagonal elements the

M that

corresponding such

M =KDK" .
Next, since all the eigenvalues of M are positive we

can write D=D"D'"? where D"? is obtained from D
by replacing all the diagonal elements with its square

root. Finally we calculate B =KD"?K" to obtain the
square root of M. [Using MATLAB,B =sqrtm (M .
Indeed, B.B=KD"*(K'K DK =
=KD"D"?*K" =KDK" = M.The inverse of the square
root of M , denoted by M -y2

eigenvectors  of

is obtained to be:
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M2 =B"'=KD" KT Where for orthonormal

matrix K, K" =K is used.
iii).For the case of positive semidefinite mass matrix,
from Equation (6) we obtain:

G=M*(Q-@A)+(1-MM)g,.

where ¢ is an arbitrary acceleration vector of the

system. As in the above choosing g, =0 gives the

minimum norm solution for the acceleration of the
system to be:

4= oo
It is to be noted that the resultant constraint force ¢qTZ
can always be obtained irrespective of the rank of

matrix ¢qT .

3. Acceleration and Lagrangian Multipliers
of Mechanical System in the case of Redundant
Constraints and Positive Semidefinite Mass
Matrices

We can also apply the properties of generalized
inverse of a matrix to obtain the acceleration and
Lagrange’s multipliers, at the same time, from equation
of a constrained mechanical system given by (8) or (11).

Let as assume the mass matrix M, resulting from the
unconstrained mechanical system is symmetric positive
semidefinite 72X7 square matrix.

We dropped the assumption that M is positive

definite. M is in general considered to be positive
semidefinite. Consider equation (11) and let:

M o N
A= wq,xz{q}Yz{Q} (23)
¢, O A G

Then equation (11) can be written in the form:

AX=Y (24)
With the same method used above the General Solution
of equation (24) becomes:

X=A"Y+[1-A'AL (@5
where [ is an Identity matrix of (m+n)x(m+n) and

M is an arbitrary vector of size (m+n)x1.The
Minimum that

||AX—Y||2iS X=A"Y. The main advantage of this

Norm solution minimizes

formulation lies in the fact that A" the generalized
inverse of A, always exists provided that
Y isin the range of AX In other words, the

formulation is applicable even if the mass matrix M is
singular and the Jacobian matrix ¢qT is rank deficient.

Let us write this result as follows.

Result 1:

The General Solution of equation of motion of a
constrained mechanical system described by equation
(11), whether the matrix M that arises in the
unconstrained system is singular, whether the constraint
is redundant is given by:



.. T + T + T
|:Q:|: M (Pq |:Q}+ I— M (pq M (pq " (26)
Al o, O0||G ¢, O0]|lo, O
It is clear that, because of the arbitrary vector 4 in
equation (26) the solution of ¢ and A is not necessarily

unique. However, if A in equation (23) has a full rank

then A" A =1 and hence the solution becomes unique.
We can state this result as follows:
Result 2:

T
When the matrix A = 4\ has a full rank then
q

the General Solution of the mechanical system given by
equation (11) becomes unique and is given by:

e SIEHG T e

The next logical question could be what are the

necessary and sufficient conditions for
M @]

A= to have a full rank so that we can
P

have a unique solution?
Let us investigate it as follows:

a).Assume that M is symmetric positive semidefinite
and @, has full rank. If M is positive definite on the

kernel of ¢, (ie. @x=0and x# 0implies that

x"Mx > 0), then Ais nonsingular.
Proof: We show that Au#0 for u#0. Indeed let

u :[x,y]T,¢qx=O, x#0. Then Au=0 implies:
Mx+@ly=0
PY ) (28)
¢, x=0
It then follows that X'MX + xT(pgy =0 yielding
x"Mx =0

X"Mx =0 we obtain X =0 since X'Mx >0 for
@, X =0 and X #0. Substituting x = 0 and nothing

since xT(p;y = (p;xy =0. From

that ¢q has a full rank one can obtain from equation

(28) that Yy =0 Hence we showed that
Au=0impliesthatu=0. This shows that A4 is
nonsingular. (Sufficient condition for A to be
nonsingular)

b).On the other hand suppose A
$x=0 and x#0.

is nonsingular,

Proof. We want to show thatX MX#0 . On the
contrary let X'"Mx =0 then since M is positive
Mx=0 yielding
x ekernel (M letting u= [X,O]T and nothing that

X # 0 we can see that AU =0 for a non zero vector

semidefinite = we  obtain
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u . This contradicts the supposition that A is
nonsingular. (Necessary condition)

The result obtained from a) and b) can be written as
follows:

Result 3:

Let M be symmetric positive semidefinite and ¢q has
T

M o,
full rank. Matrix A = 0
q

has a full rank if and

only if M is positive definite on the kernel of ¢q .

Remark:

1. In Result 3 above the condition that M is positive
definite on the kernel of ¢q can be relaxed to “the mass

matrix is definite on the kernel of ¢q ”. This is because

in the proof we used x"Mx =0 only. If M is
indefinite the following example shows that A is
singular even though the Jacobian matrix ¢q has a full
rank.

1 0 |-1

From the above matrix it can be seen that the Jacobiam

matrix has a full rank and M is indefinite but A is
singular.

2. In equation (26) the Minimum Norm Solution is
always unique and is given by

g [M ol[Q
A e, 0][G)°

obtained by putting 1 =0.

Example:

This problem is adapted from the exercises given in
chapter 2 of [11].A uniform hoop of mass m and radius
r rolls without slipping on a fixed cylinder of radius R
as shown in figure 1. The only external force is that of
gravity. If the smaller cylinder starts rolling from rest on
top of the bigger cylinder, find the acceleration and each
of the constraint forces before the hoop falls off the
cylinder.

Fig. 1

Solution:
Two equations of constraints:

p=r+R,r (9-6)>R0.



The generalized coordinates are ¢ and & . The

first equation is from the fact that as long as the hoop is
touching the cylinder the center of mass of the hoop is

exactly R+r away from the center of the cylinder.
The second one comes from no slipping:

ro— r+R) 6=0.
Where ¢ is the angle r makes with the
vertical and @ is the angle p makes with the vertical.

The kinetic energy is the sum of the kinetic energy of
the center of mass of the hoop and the kinetic energy of
the hoop about the cylinder given by:

T= %m[(pé)2 + (r(?))z]_

The potential energy is the height above the center of
the cylinder and is given by:

V =mgpgpcos .
The Lagrangian is given by L=T —V , and from the
equations: d(al‘j _oL =0
dt\oe/) 06

d(aLj _a = We obtain:
oo

Lagrange’s and

dt 30

) . ~ ,
mp 02 9 _ mgpgpesi )
0 mr°)\g@ 0

The constraint equations at the acceleration level are

e

Now from equation (13) and using (29) and (30) we
obtain:

[8 2?mj[2j ) [Ssinej

Note that (0 0
0 2/m

method developed on equation (17) we have the
General Solution of the Lagrangian multipliers given

by:
AY (0 0[O .\
A,) \0 2/m)|-gsing
. 1.0) (0 0)Y(0 0|y,
0 1) (0 2/m)(0 2/m)\y,)
Where (“1] is arbitrary non-zero vector. It can easily

M,
be shown that

(8 2§)mj+ ) (@/;me[g 2?mJ B (8 mo/zj'

Hence the General Solution becomes:

)= {mgamere)

(30)

€2

}is a singular matrix. Now using the

(32)

(33)
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Note that: The Minimum Norm Solution is unique and
is given by (A, )\2):(0 mgsinej, On the other hand
’ T2

combining the equations of unconstrained mechanical
system, Equation (29), the constraint equation (30) and
using equation (11) ,(In fact in this example no
constraint stabilization method is used) together we
obtain the equation of the constrained system as:

mp? 0 0 -(R+r)) 6 —mgpgpsi
0 mr? 0 r 6| 0
0 0 0 0 |[A]| 0
-R+r) r 0 0 A, 0

From which the General Solution of the system
becomes

] mp? 0 0 -p)(-mgpgpsi
6| | 0 mr? 0 r 0 .
A, 0 0 0 0 0
A,) -R+r) r 0 O 0
mp? 0 0 -p\( mp2 0 0 -p
2 2
+tet(4)+ 0 mr 0 r 0 mrs 0 r r
0 0 0 O 0 0O 0 O
-R+r) r 0 0)-R+r) r 0 0

Numerically, let us suppose that R=1m, r=0.2m,
n=2kg, g=9.8m/s?, I = (FI,FZ,F3,F4)T is arbitrary

non-zero vector then

6 —4.0831sin®
o) —-4.0831sin6
A r,

A,) | 9.8008sin@

From which it can be seen that:

A r,
A, ) (9.8008sin6 )’

where I is an arbitrary constant.

One can verify that the values we obtained for the
Lagrangian multipliers here and in (33) are the same for

n=2kg
1. Each of the constraint forces is given by:

0 -p\A) (O 1.2 r, B

(o r LJ‘(O 0.2 J(9.80083in6j_
—11.7609sin0

=( 1.9602sin0 j

2. The acceleration of the system is given by:

) ( —4.0831sin6

(@J - (- 24.5008sin eJ

From which it can be solved that:

B (t)=4.0831sin6+C,t+C,ando ()=

=-24.5008t 2sin6+C,

where C,,C, and C are arbitrary constants that can
be determined based on initial conditions. If the hoop
starts from rest then @ = 0,9 =0 From these initial
conditions we obtain:



8 (t)=4.0831 (sin@-tando (t)=-24.5008tsind

4. Conclusions

The application of the methods we used here
can equivalently be applied to other methods of
modeling mechanical systems mentioned in the
introductory part of this paper including nonholonomic
constraint systems. It must also be noted that, even
though we may come up with infinite number of
equations of motion and infinite number of Lagrangian
multipliers of a mechanical system, in all practical
purposes, we make use of the minimum norm solutions
which is always unique. The calculation of generalized
inverse of a matrix, especially with one or more variable
entries seems to be expensive, but if all the entries are
scalars, obtaining the generalized inverse is not that
expensive. In the second case one can also use
MATLAB and other software.

"Paboma evinonnena npu Gunancosoi nodoepicke
PODU, npoexm 10-08-00535.
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