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матрицы. 
 

Dynamic equations of motion for mechanical systems with regard to Lagrange’s equation of motion are discussed. The 
case of redundant constraints and positive semidefinite mass matrix in obtaining the Lagrangian multipliers and the 
constraint forces corresponding to a constraint equation based on a generalized inverse of a rectangular matrix and 
Singular Value Decomposition (SV D) is detailed. Different ways of applying the generalized inverse of a matrix in 
relation to obtaining an acceleration of a mechanical system on which a holonomic constraint is imposed is 
investigated. It is established that there could be an infinite set of solutions for an acceleration and Lagrangian 
multipliers of a dynamic system. The conditions that need to be satisfied for an equation of a mechanical system to have 
a unique solution is also spelled out and ascertained by proof. Method of obtaining the generalized inverse of a matrix 
is also discussed. A numerical example is given to show the application of the methods. 
 

Key Words: Generalized Inverse, Holonomic Constraint, Positive definite matrix, Positive Semidefinite matrix, Rank Deficient Matrix, 
Redundant Constraints, Singular Mass matrix, Singular Value Decomposition. 

 
Рассматривается задача построения уравнений динамики управляемой механической системы в обобщенных 
координатах в случае голономных связей и знакопостоянной положительной матрицы масс. Получены 
множители Лагранжа и реакций связи, соответствующие уравнению связей. Предлагается алгоритм, 
основанный на построении обобщенной обратной прямоугольной матрицы и сингулярного разложения (SVD). 
Исследованы различные способы использования обобщенной обратной матрицы для приведения уравнений 
динамики к виду, разрешенному относительно  ускорений. Установлено, что решение уравнений относительно 
ускорений и множителей Лагранжа динамической системы не является единственным. Определены условия 
единственности решения. Предложен метод построения обобщенной обратной матрицы. Приводится 
числовой пример, иллюстрирующий  применение предлагаемых методов. 

 
1. Introduction 

Modeling motion of mechanical system can be 
made in several equivalent ways. For instance, 
Lagrange multipliers method, Null space method and 
Magi’s method are some of them [1,2,3]. In each of this 
methods a set of Differential-Algebraic-Equations 
(DAE) results. If these set of DAE of motion does not 
use explicitly the position and velocity equations 
associated to the constraints, then it leads to the problem 
of stability at the position and velocity level of the 
constraints. The strategies generally used to overcome 
this problem are the Coordinate Partitioning Method 
[2], the Baumgarte’s Stabilization Method [4], the 
Augmented Lagrangian formulation or Mass-orthogonal 
projections of position and velocity vectors [5]. 

Moreover, in addition to the stability problems 
that may happen while simulating constrained 
mechanical systems, problems related to the presence of 
redundant constraints is also unavoidable in practice. In 
the presence of more equations than strictly needed the 
Jacobian matrix becomes rank deficient. This can be 
observed when some of the equations are dependent in 
the remaining ones. This makes the leading matrix, for 
example in Lagrangian Index one equation, singular. 
The leading matrix can also be singular when the mass 
matrix is singular. A Singular Mass matrices may 
appear when more than six coordinates are used to 

define the position of a rigid body in 3R  [2].The 
Jacobian matrix can also be rank deficient when the 
mechanical system reaches a configuration in which 
there is a sudden change in the number of degree of 

freedom. For instance, a slider crank mechanism [5] 
reaches a singular configuration when both the two 
links are at vertical position. In this position both links 
overlap and the mechanism has not one but two degree 
of freedom that corresponds to two possible motions 
that the mechanism can undergo. 

This paper presents a brief discussion on 
modeling a mechanical system with Index one 
Lagrange’s equation of motion in the presences of 
redundant holonomic constraints. As the Index one 
Lagrange’s equation of motion does not include the 
position and velocity constraint equations explicitly, it 
does not provide any solution for the constraint 
violation problem. Therefore, a technique useable to 
minimize the constraint violation errors is still required. 
To this end Baumgarte’s method of stabilization is 
included in the discussion. 

The main purpose of this paper is to show the 
application of Generalized Inverse of a matrix in finding 
the acceleration, the Lagrangian multipliers and as a 
result, the constraint forces of a mechanical system with 
a holonomic constraint imposed. This is discussed based 
on properties of Generalized Inverse of a Matrix and 
Singular Value Decomposition. The advantage of this 
method is that, it can handle singular mass matrices and 
redundant constraints. That is, the mass matrix can in 
general be assumed to be square symmetric and positive 
semidefinite. The positive definiteness of the mass 
matrix is not required in the application of this method. 
Redundant constraints are handled in the solution of 
system of equations of motion and the problems that 
involve singular configurations and redundant 
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constraints, and other problems associated with 
changing the number of degrees of freedom can be 
managed using the method developed in this paper. 

2. Constructing Equation of Motion for a 
Holonomic Constrained Mechanical Systems 

In this section we will discuss a general 
approach of constructing equation of motion of a 
mechanical system in which a holonomic constraint is 
involved based on the literature. 

Let  Tn21 q,...,q,qq  be n  generalized 

coordinate of a system and suppose that the system is 
subjected to nm   holonomic constraints given by: 

  0tq,Φ  .   (1) 

Let      qVqq,Tqq,LL    be the Lagrangian 

of the system where  qq,TT   and  qVV   are 

respectively the kinetic and potential energy of the 
system. Then the Lagrange’s equation of motion of the 
system can be given by [3, 6, 7]: 
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Where вхQ  generalized external is force, and   is 

Lagrange’s multiplier. The kinetic energy of a 
multibody  
system can be written in the form [1,2,7]: 
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2
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where M ︵q ︶M   is the mass matrix of the system 

which is assumed to be symmetric and positive definite 
square matrix. 
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Then equation (2) can be written as: 

qMQLλφqM вхq
T
q     (5) 

where  
q
LLq 


 . 

Putting qMQLQ вхq   equation (5) becomes: 

QλφqM T
q  .  (6) 

The position, velocity and acceleration vectors in 
Equation (5) must satisfy the corresponding constraint 
equations: 

    0t ︶φ ︵q,  ,                                   (7a) 

    0φqφφ tq                             (7b) 

    0φqφqφφ tqq                  (7c) 

Equation (7a) − (7c) and (6) together 
constitutes mn   DAE of Index 3 [7] with q and   

as unknowns. However, if only equations (7c) and (6) 
are considered, the following index 1 DAE system 
equivalent to an ODE system is obtained: This system is 

said to be [2] Lagrange’s Index one system of dynamic 
equations. 
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where qφφG qt    

The system of differential equations (8) 
presents a constraint stabilization problem. As only the 
acceleration constraint equations have been imposed, 
the positions and velocities provided by the integrator 
suffer from a drift phenomenon. Some solutions to this 
problem are the Baumgarte’s stabilization method [4] 
and the mass orthogonal projections of position and 
velocity vectors [2,5]. We will discuss Baumgarte’s 
method of constraint stabilization. To secure 
Baumgartes stabilization of the constraint equation we 

replace [4]   in equation 7c by: 

0βφφαφ   ,   (9) 

Where   and   are appropriately chosen constants. 

After replacing we obtain: 

tqtqq φqφβφ︶φqα ︵φqφ    

Substituting  

tqtq φqφβφ︶φqα ︵φG    , 

we obtain: 

Gqφq     (10) 

Considering equations (6) and (10) we obtain the 
equation of the dynamic system to be: 
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Equation (11) constitutes nm   index one 
Ordinary Differential Equations, with the required 
values q  and  .But still after Baumgarte’s 

stabilization method is applied to the system, there 
could be a problem of redundant constraints and 
singular mass matrices. Let us see the following 
example that describes how singular mass matrix may 
happen. A Singular Mass matrices may appear when 
more than six coordinates are used to define the position 

of a rigid body in 3R  . When Euler parameters or 
natural coordinates are used this is always the case. 
With natural coordinates [2,9] the constant inertia 
matrix of a rigid body requires that the body be defined 
with two points and two unit vectors (or a similar 
configuration, for instance with four non-coplanar 
points). If this body has additional points and unit 
vectors, the corresponding rows and columns of the 
inertia matrix have null values, making this matrix 
positive semidefinite. In the case of redundant 
constraints in equation (1) the Jacobian matrix does not 
have full rank. In this situation we can obtain the 

resultant reaction force of the constraints T
q  but not 

[2,9,10] each of the  ,   =1,2,… m .Let us consider 

the following two cases: 
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1. Assuming that M  is positive definite and the 

Jacobean Matrix q  
has full rank, that is:  

,nnT RMM   ,nm
q R    ,)( nMran   

mran q )( . Then the value of q  from equation (6) 

can be obtained to be: 

λφMQMq T
q

11   ,   (12) 

and substituting(12) into (10) we obtain 

  GQMφλφMφ 1
q

T
q

1
q   ,  (13) 

which yields: 

   GQMφφMφλ 1
q

1T
q

1
q  

 . (14) 

The value of   can be obtained from (14) and then 

putting its value in (12) the corresponding value of q  

can be obtained. That is: 

 
G︶φM︵φφM

QMφ︶φM︵φφMMq
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q
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q
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q
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1
q
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T
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






    (15) 

2. Assume that M is positive definite and the Jacobian 
Matrix is rank Deficient. 
As it is discussed above, redundant constraints in 
equation (1) can be reflected by the fact that some of the 
equations are dependent in the remaining ones. This 
lack of equation independence in the system (1) may 

lead to a rank deficiency in the Jacobian matrix q and 

an over constrained system of linear equations (more 
equations than unknowns) which will not have a 
solution that satisfy all the equations. 
In such situations, suppose we need to find each of the 

Lagrangian Multipliers  ,   =1,2,…  m  and then 

each of the constraint forces of a mechanical system. 

That is, assuming that  mxnT
q Rφ   , 

mr︶ran ︵φ
T
q   and for any convenient vector, let 

HλφT
q   

The general solution, by the Minimum Norm 
Solution method using Generalized Inverse of a matrix, 
of[8]: 

HλφT
q  ,                                                      (16) 

is given by:  

 η ︶︵φ︶︵φIH︶︵φλ T
q

T
q

T
q

  ,    (17) 

where I  is n  by n  identity matrix and 1 nR  is 

arbitrary Lagrangian multiplier vector,  

︶︵φ︶︵φI T
q

T
q

  represents the orthogonal projection 

matrix in the null space of T
q .That is Equation (17) can 

be decomposed [7,8] as: 

Nηλλ 0     (18) 

where H︶︵φλ T
q0

   is the minimum norm solution 

that minimizes 
2

T
q Hλφ   and ︶︵φ︶︵φIN T

q
T
q

  

is a vector in the kernel of T
q . 

With regard to (17) we have the following two cases: 

a) If T
qB   has a full rank then, 1TT

︶︵BBBB    

and hence equation (17) reduces to 

H︶︵BBBHBλλ 1TT
0

  , since I − BB  = 

0. Therefore in this case we have a unique solution 

0λλ   which is called the pseudoinverse solution 

[8].Note that, if B is a square matrix and has a full rank 

then B = 1B  and in this case the nullspace of 
T
q contains only the zero vector. 

b) If B  is rank deficient we apply the method of SVD  

in which case B can be calculated as TUSVB   

where U  and V  are n  by n  and m  by m  square 

orthogonal matrices respectively and S  has the same 

size as B  and is n  by m  matrix. The non-square 

matrix S  1has non-zero elements only on its diagonal 
and therefore, the calculation of its generalized inverse 

S  is trivial [8]. Note that,   SVD  is based on a 
theorem from linear algebra which says that a  
rectangular matrix B  can be broken down into the 
product of three matrices - an orthogonal matrix U , a 

diagonal matrix S , and the transpose of an orthogonal 

matrix V  . The theorem is usually presented something 

like this: T
nnmnmmmn VSUB   ,where 

IVVIUU TT  ;   the columns of U  are 

orthonormal eigenvectors of TBB  , the columns of V  

are orthonormal eigenvectors of TBB , and S  is a 
diagonal matrix containing the square roots of 
eigenvalues from U or V  in descending order. The 

generalized inverse of B is [7]  TUVSB    where 

the relation 1T1T VV;UU    valid for orthogonal 
matrices have been used and: 
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The sub-matrix 1
11
S contains the reciprocal of 

the non-zero singular values along the principal 
diagonal. In this case,   B  is rank deficient, then 
equation (16) has an infinite number of solutions given 
by equation (17). 
In summary: 
i).When we apply the method discussed above to 

Equation (13) assuming that T
q is rank deficient we 

obtain   to be: 
G ︶]QM︵φ[IG ︶QM︵φ︶︶︵φM︵φλ 1

q
1

q
T

q
1

q  

where   is an arbitrary Lagrangian multiplier. By 

pressing on   we can obtain infinite solutions for 

 .Substituting 0  we obtain the minimum norm 

solution: 

                                                            
1 S is rectangular diagonal matrix, which is an m-by-n matrix 
with only the entries of the form di,i possibly non-zero. 
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G ︶QM︵φ︶︶︵φM︵φλ 1
q

T
q

1
q    

that minimizes 
2

1
q

T
q

1
q GQM[φ︶λφM︵φ    

ii).We can obtain  from equation (15) as follows. 
When we closely look at equation (15) we observe that 

1T
q

1
q ︶︶︵φM︵φ

 should exist for the values of q  be 

obtained. The existence may fail in case the Jacobian 
matrix is rank deficient. In this instance one method to 
obtain q  is to make use of the assumption that M is 

positive definite that grantees the diagonalizability of  
M . 
Let the mass matrix M  resulting from unconstrained 
mechanical system be positive definite and the 
acceleration of the unconstrained system be denoted by 

ncq . Then we have QMq 1nc   and referring to 

equation (15) we have: 

 nc
q

1T
q

1
q

T
q

1nc qφG︶φM︵φφMqq       (19) 

From the fact that M  is positive definite we obtain 
2121 MMM   and hence 21211 MMM   . Then 

equation (19) becomes: 
 nc

q
1T

q
2121

q
T
q

2121nc qφG︶φMM︵φφMMqq    (20) 

Putting 21
qMφF   equation (20) becomes 

 nc
q

1TT21nc qφG︶︵FFFMqq     (21) 

From the properties of generalized inverse of a matrix 
we have  F︶︵FFF 1TT . Hence equation (21) 
becomes: 

 nc
q

21nc qφGFMqq      (22) 

It can be seen in (22) that the values of q  is 

independent of whether the coefficient matrix in 
equation (8) or (11) is rank deficient or not. Moreover, 

F can be calculated as explained above using  SVD  
method. 

The next point will be on how to obtain 21M : Since 

M  is assumed to be symmetric and positive definite [8] 
it has a unique square root B , such that BBM  . In 
order to find matrix B   first we need to diagonalize 

matrix M . That is, we need to find a matrix K  which 

consists of the orthonormal eigenvectors of M  and a 
diagonal matrix D with its diagonal elements the 

corresponding eigenvectors of M  such that 
TKDKM   . 

Next, since all the eigenvalues of M  are positive we 

can write 2121 DDD  where 21D  is obtained from D  
by replacing all the diagonal elements with its square 

root. Finally we calculate T21 KKDB   to obtain the 

square root of M .  sqrtm ︵M ︶BMATLAB, Using  . 

Indeed,    T21T21 KDKKKDB.B  

MKDKKIDKD TT2121  .The inverse of the square 

root of M , denoted by 21M  is obtained to be: 

T21121 KKDBM   , Where for orthonormal 

matrix K , TKK 1  is used. 
iii).For the case of positive semidefinite mass matrix, 
from Equation (6) we obtain: 

    0
T
q qMMIλφQMq    , 

where q   is an arbitrary acceleration vector of the 

system. As in the above choosing 00 q  gives the 

minimum norm solution for the acceleration of the 
system to be: 

 λφQMq T
q   

It is to be noted that the resultant constraint force T
q  

can always be obtained irrespective of the rank of 

matrix T
q . 

3. Acceleration and Lagrangian Multipliers               
of Mechanical System in the case of Redundant 

Constraints and Positive Semidefinite Mass 
Matrices 

We can also apply the properties of generalized 
inverse of a matrix to obtain the acceleration and 
Lagrange’s multipliers, at the same time, from equation 
of a constrained mechanical system given by (8) or (11). 

Let as assume the mass matrix M , resulting from the 
unconstrained mechanical system is symmetric positive 
semidefinite nn  square matrix. 

We dropped the assumption that M  is positive 

definite. M  is in general considered to be positive 
semidefinite. Consider equation (11) and let: 
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        (23) 

Then equation (11) can be written in the form: 

YAX     (24) 
With the same method used above the General Solution 
of equation (24) becomes: 

 μAA1YAX     (25) 

where I  is an Identity matrix of )()( nmnm   and 

  is an arbitrary vector of size 1)( nm .The 

Minimum Norm solution that minimizes 

YAXisYAX
2

 . The main advantage of this 

formulation lies in the fact that A  ,the generalized 
inverse of A , always exists provided that 

AXofrangetheinisY .In other words, the 

formulation is applicable even if the mass matrix M  is 

singular and the Jacobian matrix T
q is rank deficient. 

Let us write this result as follows. 
 
Result 1: 
The General Solution of equation of motion of a 
constrained mechanical system described by equation 
(11), whether the matrix M that arises in the 
unconstrained system is singular, whether the constraint 
is redundant is given by: 
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It is clear that, because of the arbitrary vector   in 

equation (26) the solution of q  and λ is not necessarily 

unique. However, if A  in equation (23) has a full rank 

then 1AA   and hence the solution becomes unique. 
We can state this result as follows: 
Result  2: 

When the matrix













0φ
φM

A
q

T
q

has a full rank then 

the General Solution of the mechanical system given by 
equation (11) becomes unique and is given by: 





















































G
Q

0φ
φM

G
Q

0φ
φM

λ
q

1

q

T
q

q

T
q

         (27) 

The next logical question could be what are the 
necessary and sufficient conditions for 














0φ
φM

A
q

T
q

 to have a full rank so that we can 

have a unique solution? 
Let us investigate it as follows: 

a).Assume that M  is symmetric positive semidefinite 

and q has full rank. If M  is positive definite on the 

kernel of q  (i.e. 0xq and 0x implies that 

0MxxT ), then A is nonsingular. 

Proof: We show that 0Au  for 0u . Indeed let 

 Tyxu , , 0xq , 0x . Then 0Au  implies: 











0xφ

0yφMx

q

T
q .   (28) 

It then follows that 0yφxMxx T
q

TT   yielding 

0MxxT   since 0xyφyφx T
q

T
q

T  . From 

0MxxT   we obtain 0x   since 0MxxT   for 

0xφq   and 0x  . Substituting x = 0 and nothing 

that q  has a full rank one can obtain from equation 

(28) that 0y  .Hence we showed that 

00  uthatimpliesAu . This shows that A  is 

nonsingular. (Sufficient condition for A   to be 
nonsingular) 
b).On the other hand suppose A  is nonsingular, 

0xq   and 0x . 

Proof. We want to show that 0MxxT   . On the 

contrary let 0MxxT   then since M  is positive 

semidefinite we obtain  0Mx    yielding 

kernel ︵M ︶x  letting  Tx,0u   and nothing that 

0x   we can see that 0Au   for a non zero vector 

u . This contradicts the supposition that A  is 
nonsingular. (Necessary condition) 
The result obtained from a) and b) can be written as 
follows: 
Result 3: 

Let M be symmetric positive semidefinite and q  has 

full rank. Matrix













0φ
φM

A
q

T
q

 has a full rank if and 

only if M is positive definite on the kernel of q  .  

 
Remark: 

1. In Result 3 above the condition that M  is positive 

definite on the kernel of q  can be relaxed to “the mass 

matrix is definite on the kernel of q  ”. This is because 

in the proof we used 0MxxT   only. If M is 
indefinite the following example shows that A  is 

singular even though the Jacobian matrix q  has a full 

rank. 



































0φ
φM

011
110
101

A
q

T
q

 

From the above matrix it can be seen that the Jacobiam 

matrix has a full rank and M  is indefinite but A  is 
singular. 
2. In equation (26) the Minimum Norm Solution is 
always unique and is given by 
































G
Q

0φ
φM

λ
q

q

T
q

 , 

obtained by putting 0 . 

Example: 
This problem is adapted from the exercises given in 
chapter 2 of [11].A uniform hoop of mass m and radius 
r rolls without slipping on a fixed cylinder of radius  
as shown in figure 1. The only external force is that of 
gravity. If the smaller cylinder starts rolling from rest on 
top of the bigger cylinder, find the acceleration and each 
of the constraint forces before the hoop falls off the 
cylinder. 
                                                               

 
 

Fig. 1 
 

Solution: 
Two equations of constraints: 

Rrρ  ,  Rθθ ︶οr ︵  . 
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The generalized coordinates are   and  . The 
first equation is from the fact that as long as the hoop is 
touching the cylinder the center of mass of the hoop is 
exactly rR   away from the center of the cylinder. 
The second one comes from no slipping: 

0R ︶θ︵rοr  . 
Where   is the angle r  makes with the 

vertical and   is the angle   makes with the vertical. 

The kinetic energy is the sum of the kinetic energy of 
the center of mass of the hoop and the kinetic energy of 
the hoop about the cylinder given by: 

    22
οrθρm

2
1T   . 

The potential energy is the height above the center of 
the cylinder and is given by: 

mgρgρcos ︵V  . 

The Lagrangian is given by VTL  , and from the 

Lagrange’s equations: 0
θ
L

θ
L

dt
d
















 and 

0
ο
L

ο
L

dt
d


















 we obtain: 



























0

mgρgρsi
ο
θ

mr0
0mρ

2

2




 (29) 

The constraint equations at the acceleration level are 
given by: 



























 0

0
ο
θ

rρ
00




  (30) 

Now from equation (13) and using (29) and (30) we 
obtain: 


























gsinθ
0

λ
λ

2/m0
00

2

1
  (31) 

Note that 








2/m0
00 is a singular matrix. Now using the 

method developed on equation (17) we have the 
General Solution of the Lagrangian multipliers given 
by: 

.














































































2

1

2

1

μ
μ

2/m0
00

2/m0
00

10
01

gsinθ
0

2/m0
00

λ
λ

 (32) 

Where 








2

1

μ
μ

  is arbitrary non-zero vector. It can easily 

be shown that 

  



































m/20
00

2/m0
00

2/m
1

2/m0
00

2
. 

Hence the General Solution becomes: 

  
















/2mgsinθ

μ
λ
λ 1

2

1
                       (33) 

Note that: The Minimum Norm Solution is unique and 

is given by   







2
mgsinθ0,λ,λ 21

. On the other hand 

combining the equations of unconstrained mechanical 
system, Equation (29), the constraint equation (30) and 
using equation (11) ,(In fact in this example no 
constraint stabilization method is used) together we 
obtain the equation of the constrained system as: 

 

  

































































0
0
0

mgρgρsi

λ
λ
ο
θ

00rrR
0000
r0mr0

rR00mρ

2

1

2

2





 

From which the General Solution of the system 
becomes  

 

 

   

Γ

00rrR
0000
r0mr0
ρ00mρ

00rrR
0000
r0mr0
ρ00mρ

4tet

0
0
0

mgρgρsi

00rrR
0000
r0mr0
ρ00mρ

λ
λ
ο
θ

2

2

2

2

2

2

2

1



















































































































































 

Numerically, let us suppose that R=1m, r=0.2m, 

m=2kg, g=9.8m/s2,  T4321 ,,,   is arbitrary 

non-zero vector then 













































9.8008sinθ
Γ

4.0831sinθ
4.0831sinθ

λ
λ
ο
θ

3

2

1





 

From which it can be seen that:  


















9.8008sinθ

Γ
λ
λ 3

2

1 , 

where 3  is an arbitrary constant. 
One can verify that the values we obtained for the 
Lagrangian multipliers here and in (33) are the same for 

m=2kg 
1. Each of the constraint forces is given by: 


























 
















 

1.9602sinθ
θ11.7609sin

9.8008sinθ
Γ

0.20
1.20

λ
λ

r0
ρ0 3

2

1

 

2. The acceleration of the system is given by: 





















 θ24.5008sin
4.0831sinθ

ο
θ



 

From which it can be solved that: 

C,2sinθ24.5008t

︵t ︶οandCtC4.0831sinθθ ︵t ︶ 21




 

 where 1C , 2C  and C  are arbitrary constants that can 

be determined based on initial conditions. If the hoop 
starts from rest then 0,0    From these initial 

conditions we obtain:  
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sinθ24.5008t︵t ︶οandt ︶θ4.0831 ︵sinθ ︵t ︶
2

 
4. Conclusions 

The application of the methods we used here 
can equivalently be applied to other methods of 
modeling mechanical systems mentioned in the 
introductory part of this paper including nonholonomic 
constraint systems. It must also be noted that, even 
though we may come up with infinite number of 
equations of motion and infinite number of Lagrangian 
multipliers of a mechanical system, in all practical 
purposes, we make use of the minimum norm solutions 
which is always unique. The calculation of generalized 
inverse of a matrix, especially with one or more variable 
entries seems to be expensive, but if all the entries are 
scalars, obtaining the generalized inverse is not that 
expensive. In the second case one can also use 
MATLAB and other software. 

 
*Pабота выполнена при финансовой поддержке 
РФФИ, проект 10-08-00535. 
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