К настоящему времени «сухие» газодинамические уплотнения (СГУ), по сравнению с другими типами концевых уплотнений корпуса сжатия, получили наибольшее применение в центробежных компрессорных машинах [1]. Одновременно возрастают требования по надёжности и долговечности уплотнительных узлов. Согласно этим требованиям СГУ должны работать без ревизии не менее трёх лет или 25000 часов. Надёжная работа СГУ зависит от формы уплотнительного зазора, обеспечивающего отсутствие контакта рабочих поверхностей газодинамических колец на всех режимах эксплуатации центробежного компрессора (ЦК). Форма уплотнительного зазора определяется особенностями конструкции и термоупругими деформациями газодинамических колец, зависящими от режимных параметров работы ЦК, свойств компримируемого газа, геометрических размеров колец [2,3,4]. Для определения предпочтительной формы зазора необходимо проанализировать влияние режимов работы ЦК на деформации рабочих поверхностей газодинамических колец. Перед пуском ЦК, когда отсутствует газ под давлением в корпусе сжатия и скорость вращения ротора равна нулю, рабочая поверхность аксиальноподвижного кольца 1 (Граница Гб) (рис. 1) прижимается к рабочей поверхности вращающегося кольца 2 (Граница Г5), усилиями создаваемыми пружинами. Суммарное усилие пружин, действующее на тыльную сторону аксиальноподвижного кольца между радиусами находится, в зависимости от размеров газодинамических колец, в диапазоне 100...200 Н. При пуске привода ЦК, с началом вращения ротора компрессора, газодинамические канавки 3 на вращающемся кольце 2, создают силу реакции газового слоя, возрастающую с увеличением . Когда сила превышает усилие , аксиально-подвижное кольцо 1отодвигается от вращающегося кольца 2. В результате между кольцами образуется газовый слой, предотвращающий контакт между рабочими поверхностями. Увеличение уплотняемого давления после появления вращения ротора и образования газового слоя между кольцами приводит к изменению величины зазора. Рис. 1 - Схема распределения сил, действующих на газодинамические кольца, зависящих от уплотняемого и конечного давлений На практике пуск привода ЦК, как правило, осуществляется при наличии газа в корпусе сжатия под уплотняемым давлением. На этом режиме, сила, действующая на тыльную сторону аксиально-подвижного кольца, может достигать нескольких тонн. Например, у представителя типоразмерного ряда СГУ разработки ЗАО «НИИтурбокомпрессор им. В.Б. Шнеппа» (ЗАО НТК) для ЦК ГПА 16 «Волга», при уплотняемом давлении 56 кг/см2, сила составляет 8,8 тонн. При наличии контакта между газодинамическими кольцами по всей рабочей поверхности, мощности привода может быть недостаточно, чтобы привести ротор во вращение. При достаточной мощности привода, сила реакции газового слоя, возникающая с началом вращения ротора, может оказаться недостаточной для образования газового слоя между кольцами. При увеличении скорости

вращения ротора трение рабочих поверхностей вызовет резкое повышение температуры в месте контакта и может привести к разрушению колец. Аналогичная картина наблюдается при останове ЦК при наличии газа под давлением в корпусе сжатия. Когда скорость вращения ротора уменьшается от рабочего значения до нуля, сила реакции газового слоя, создаваемая газодинамическими канавками, уменьшается до нуля. Сила от уплотняемого давления, действующая на тыльную сторону аксиально-подвижного кольца при этом остаётся неизменной. При замедлении вращения ротора, когда сила становится меньше происходит контакт рабочих поверхностей колец, который вызовет рост температуры. Рассмотрим деформации рабочих поверхностей и пути уменьшения площади контакта между газодинамическими кольцами на режимах пуска, расчётного режима работы и останова ЦК. 1. Режим пуска. Скорость вращения ротора =0, уплотняемые давление и температура, расчётные значения. Вращающееся кольцо имеет прямоугольную форму в радиальном сечении. Поэтому сила от уплотняемого давления, действующая по поверхности Г8 (рис. 1) не оказывает влияние на изменение формы его рабочей поверхности Г5. Сила от , действующая на тыльную сторону вращающегося кольца по поверхности Г14 деформирует его рабочую поверхность по направлению действия. Аксиально-подвижное кольцо имеет сложную форму сечения в радиальном направлении, поэтому на деформации рабочей поверхности Г6 оказывает влияние сила от действующая как на радиальные поверхности Г11, так и на поверхности Г19. Под действием рабочая поверхность аксиально-подвижного кольца может изменяться, образуя с вращающимся кольцом следующие формы уплотнительных зазоров: а - сечение зазора увеличивается по направлению движения газа от радиуса к радиусу (при этом кольца имеют контакт по радиусу ); б - кольца имеют контакт по всей рабочей поверхности (Границы Г5 – Г6); в – сечение зазора уменьшается по направлению движения газа от радиуса к радиусу (при этом кольца имеют контакт по радиусу ); г - по направлению движения газа от радиуса к радиусу сечение зазора уменьшается (рис. 2), далее увеличивается к радиусу (при этом кольца имеют контакт по радиусу ). Рис. 2 - Форма уплотнительного зазора на расчётном режиме работы ЦК Формы зазоров (в) и (г), под действием перепада между высоким уплотняемым давлением и давлением за уплотнением, позволяют проникать уплотняемому газу между рабочими поверхностями колец. Наличие газового слоя между рабочими поверхностями газодинамических колец, обеспечивает отсутствие их контакта в момент начала вращения ротора. 2. Расчётный режим работы. Скорость вращения ротора, уплотняемые давление и температура, - расчётные значения. Под действием силы реакции газового слоя, температуры и силы от уплотняемого давления аксиально-подвижное кольцо отодвигается от вращающегося, образуя уплотнительный зазор с формами описанными выше. При этом на вращающееся кольцо, по направлению от центра к периферии действуют центробежные силы «растягивающие» кольцо в радиальном направлении. Эти силы не влияют на изменение формы его рабочей поверхности. На рабочие поверхности газодинамических колец действует сила реакции газового слоя, которая противодействует силам от уплотняемого давления, действующим на кольца в осевом направлении (Граница Г14, Г19 - см. рис. 1). Температура уплотняемого газа, протекающего по рабочему зазору, увеличивается с увеличением скорости вращения ротора. Коэффициент, характеризующий интенсивность теплоотдачи от тыльных поверхностей газодинамических колец (Граница Г14, Г15, Г19, Г20) тем выше, чем больше текущий радиус. 3. Режим останова. Скорость вращения ротора уменьшается до нуля, уплотняемые давление и температура, - расчётные значения. За время уменьшения скорости вращения ротора газодинамические кольца не восстанавливают форму, деформированную от действия неравномерного поля температуры. Сила реакции газового слоя уменьшается до нуля. Газодинамические кольца при формах зазора, (а,б), контактируют по поверхностям соответствующим радиусам и . Формы зазоров, (в,г), обеспечивают отсутствие контакта за счёт наличия газового слоя, образованного под действием перепада между уплотняемым давлением и давлением за уплотнением. Представленный теоретический анализ режимов работы СГУ, позволяет определить, что с точки зрения обеспечения отсутствия контакта между рабочими поверхностями газодинамических колец, предпочтительными формами зазоров являются формы (в,г). Для проверки теоретического анализа проведён эксперимент. Суть эксперимента заключалась в имитации режимов пуска и останова на испытательном стенде при наличии давления в полости перед уплотнением. С этой целью были спроектированы газодинамические кольца, образующие на исследуемых режимах формы зазоров (в,г). После испытаний проведена ревизия состояния рабочих поверхностей, которая на газодинамических кольцах, образующих формы зазоров (в), выявила незначительные следы контакта в области, соответствующей радиусу. По результатам экспериментально-теоретических исследований, форма уплотнительного зазора (г) определена в качестве объекта исследования для дальнейшего изучения. Представленный анализ работы СГУ выявил, что принятая в качестве объекта исследования форма уплотнительного зазора обеспечивает отсутствие контакта на всех рассмотренных режимах. Таким образом, при проектировании СГУ можно рассматривать только расчётный режим работы ЦК. Для описания формы уплотнительного зазора вводится следующая терминология (рис. 2): 1. Зазор на входе в газовый слой, соответствующий радиусу обозначается как . 2. Зазор на выходе из газового слоя, соответствующий радиусу обозначается как . З. Минимальный зазор обозначается как. Радиус, соответствующий обозначается. С целью возможности распространения результатов исследования головного образца СГУ

для проектирования типоразмерного ряда уплотнений, охватывающих широкий спектр ЦК необходимо ввести безразмерный параметр. Такой параметр, в комплексе с минимальным значением зазора и соотношением деформаций рабочих поверхностей газодинамических колец могут служить рекомендациями для проектирования СГУ. Для оценки изменения формы уплотнительного зазора вводится коэффициент конусности, который определяется по формуле: , где текущее значение зазора; - минимальное значение зазора между газодинамическими кольцами; - протяжённость газового слоя. Протяжённость газового слоя, для случая, когда зазор имеет минимальное значение в области, заключённой между радиусами определяется: . В остальных случаях протяжённость газового слоя определяется по формуле: . Форма зазора, когда его величина по направлению движения газа уменьшается, обозначается как конфузорная. Форма зазора, когда величина зазора по направлению движения газа увеличивается, обозначается как дифузорная. Область уплотнительного зазора, соответствующая протяжённости газового слоя от до, обозначается как область газодинамических канавок. Область уплотнительного зазора, соответствующая протяжённости газового слоя от до, обозначается как область уплотнительного пояска. Следует отметить, что не совпадает с радиусом окончания газодинамических канавок и принятая терминология служит для обозначения формы зазора по отношению к. Коэффициент конусности показывает, как изменяется форма уплотнительного зазора в радиальном направлении. Коэффициент при параллельных поверхностях газодинамических колец. Определение предпочтительного диапазона значений является важнейшей задачей расчётного исследования. С использованием разработанного программного комплекса [5] проведено расчётное исследование. В качестве исследуемого принято СГУ для ЦК 6ой типоразмерной базы ГПА-16 «Волга» производства ОАО «Казанькомпрессормаш» по следующим причинам: диаметр ротора в месте установки уплотнения у данного типоразмера ЦК составляет 160 мм, что соответствует верхней границе исследования по размерам, разрабатываемого типоразмерного ряда СГУ; диаметры газодинамических колец данного уплотнения имеют наибольшие размеры из представителей ряда, а следовательно большие окружные скорости и деформации рабочих поверхностей, при прочих равных условиях. Таким образом, СГУ для ЦК ГПА 16 «Волга» работает в более «тяжёлых» условиях по сравнению с остальными представителями ряда, имеющими меньшие размеры газодинамических колец. За номинальный (расчётный) режим работы СГУ принят режим работы ЦК, сжимающего природный газ (состав 70 % - метан, 16 % - этан, 10 % - пропан, 4 % -азот) с уплотняемым давлением =56 кгс/см2, температурой газа перед уплотнением =333 К и скоростью вращения ротора =5600 об/мин. В качестве примера определения формы уплотнительного зазора и коэффициента представлены исследования влияния уплотняемого давления.

При исследовании =333 К, =5600 об/мин, варьировалось в пределах от 16 до 96 кгс/см2. При увеличении уплотняемого давления возрастают силы, действующие на газодинамические кольца, в радиальном и осевом направлениях. Схема распределения действующих сил, представлена на рис. 1. При увеличении в радиальном направлении от периферии к центру: на вращающееся кольцо увеличивается действие силы приложенной к поверхности (Граница Г8), ограниченной наружным радиусом кольца и шириной кольца; на аксиальноподвижное кольцо увеличивается действие силы приложенной к поверхностям, ограниченным радиусом и шириной выступа, радиусом и шириной, радиусом и шириной (Граница Г11). В осевом направлении с тыльной стороны колец увеличивается действие сил, направленных в сторону уплотнительного зазора и приложенных: на вращающемся кольце к поверхности между радиусами (Граница Г14); на аксиально-подвижном кольце к поверхности между радиусами (Граница Г19). Сила реакции газового слоя, возникающая в уплотнительном зазоре, приложена к рабочим поверхностям газодинамических колец ограниченным радиусами (Граница Г5,Г6). Форму уплотнительного зазора определяют деформации рабочих поверхностей газодинамических колец (Граница Г5,Г10 – вращающееся кольцо, Граница Г6 – аксиально-подвижное кольцо). На рис. 3 (а,б) представлены формы уплотнительных зазоров при 16 и 96 кгс/см2. Штрих пунктирными линиями показаны положения рабочих поверхностей газодинамических колец без учёта их деформаций. На рисунок нанесены значения минимального зазора, который определяется в результате газодинамического расчёта с учётом формы рабочих поверхностей, величина зазора на входе в газовый слой, и на выходе из газового слоя, а также значения радиуса, соответствующего, а б Рис. 3 - Форма уплотнительного зазора в зависимости от а - =16 кгс/см2; б - =96 кгс/см2; 1 - рабочая поверхность вращающегося кольца без учёта деформаций; 2 - рабочая поверхность аксиально-подвижного кольца без учёта деформаций; 3 - рабочая поверхность вращающегося кольца с учётом деформаций; 4 - рабочая поверхность аксиально-подвижного кольца с учётом деформаций; 5 - газодинамическая канавка Результаты расчётов показывают, что при уплотняемых давлениях 16 и 96 кгс/см2 зазор имеет максимальную величину на входе - 3,56 и 4,31 мкм соответственно. По направлению от периферии к центру зазор уменьшается до минимального значения, который составляет соответственно 2,72 и 1,8 мкм, образуя конфузорную форму в области газодинамических канавок. Далее зазор расширяется к выходу и составляет соответственно 2,75 и 2,1 мкм, образуя дифузорную форму в области уплотнительного пояска. В области конфузорного уплотнительного зазора при увеличении от 16 до 96 кгс/см2 коэффициент увеличивается в 3,71 раза от 0,035·10-3 до 0,130·10-3. При =56 кгс/см2 значение коэффициента конусности в области дифузорного уплотнительного зазора имеет минимум 0,031·10-3. На рис. 4 представлен характер изменения

коэффициента конусности от для конфузорной и дифузорной областей уплотнительного зазора. а б Рис. 4 Зависимость коэффициента от а – область конфузорного уплотнительного зазора; б – область дифузорного уплотнительного зазора В результате представленных исследований разработаны рекомендации для проектирования уплотнительного зазора между газодинамическими кольцами (таблица 1), которыми можно пользоваться при разработке любого типоразмера СГУ для широкого диапазона режимных параметров работы ЦК. Таблица 1 - Предпочтительный диапазон параметров для проектирования уплотнительного зазора СГУ Параметр Предпочтительный диапазон , мкм 1,9...2,1 (область конфузорного зазора) 0,08...0,09 (область дифузорного зазора) 0,025...0,035 Область конфузорного зазора Деформация рабочей поверхности аксиально-подвижного кольца > деформации вращающегося кольца на 10...15%.