
Introduction The viscosity h of polymeric solutions is an object of the numerous
experimental and theoretical investigations generalized in ref. [1-4]. This is explained
both by the practical importance of the presented property of polymeric solutions in a
number of the technological processes and by the variety of the factors having an
influence on the h value, also by a wide diapason (from 10–3 to 102 Pa×s) of the
viscosity change under transition from the diluted solutions and melts to the
concentrated ones. The all above said gives a great informational groundwork for the
testing of different theoretical imaginations about the equilibrium and dynamic
properties of the polymeric chains. It can be marked three main peculiarities for the
characteristic of the concentrated polymeric solutions viscosity, namely: 1. Measurable
effective viscosity h for the concentrated solutions is considerable stronger than the h
for the diluted solutions and depends on the velocity gradient g of the hydrodynamic
flow or on the shear rate. It can be distinguished [4] the initial h0 and the final h¥
viscosities (h0>h¥), to which the extreme conditions g ® 0 and g ® ¥ correspond
respectively. Due to dependence of η on g and also due to the absence of its
theoretical description, the main attention of the researches [4] is paid into, so-called,
the most newton (initial) viscosity η0, which is formally determined as the limited
value at g→0. Exactly this value η0 is estimated as a function of molar mass,
temperature, concentration (in solutions). The necessity of the experimentally found
values of effective viscosity extrapolation to «zero» shear stress doesn’t permit to
obtain the reliable value of η0. This leads to the essential and far as always easy
explained contradictions of the experimental results under the critical comparison of
data by different authors. 2. Strong power dependence of h on the length N of a
polymeric chain and on the concentration r (g/m3) of a polymer in solution exists: with
the indexes α = 5 ¸ 7, b = 3,3 ¸ 3,5, as it was shown by authors [4]. 3. It was
experimentally determined by authors [1, 5] that the viscosity h and the characteristic
relaxation time t* of the polymeric chains into concentrated solutions and melts are
characterized by the same scaling dependence on the length of a chain: (1) with the
index b = 3,4. Among the numerous theoretical approaches to the analysis of the
polymeric solutions viscosity anomaly, i. e. the dependence of h on g, it can be marked
the three main approaches. The first one connects the anomaly of the viscosity with
the influence of the shear strain on the potential energy of the molecular kinetic units
transition from the one equilibrium state into another one and gives the analysis of
this transition from the point of view of the absolute reactions rates theory [6].
However, such approach hasn't take into account the specificity of the polymeric
chains; that is why, it wasn't win recognized in the viscosity theory of the polymeric
solutions. In accordance with the second approach the polymeric solutions viscosity
anomaly is explained by the effect of the hydrodynamic interaction between the links
of the polymeric chain; such links represent by themselves the «beads» into the
«necklace» model. Accordingly to this effect the hydrodynamic flow around the
presented "bead" essentially depends on the position of the other «beads» into the



polymeric ball. An anomaly of the viscosity was conditioned by the anisotropy of the
hydrodynamic interaction which creates the orientational effect [7, 8]. High values of
the viscosity for the concentrated solutions and its strong gradient dependence cannot
be explained only by the effect of the hydrodynamic interaction. That is why the
approaches integrated into the conception of the structural theory of the viscosity
were generally recognized. In accordance with this theory the viscosity of the
concentrated polymeric solutions is determined by the quasi–net of the linkages of
twisted between themselves polymeric chains and, therefore, depends on the modulus
of elasticity E of the quasi–net and on the characteristic relaxation time t* [1-2]: (2) It
is supposed, that the E is directly proportional to the density of the linkages
assemblies and is inversely proportional to the interval between them along the same
chain. An anomaly of the viscosity is explained by the linkages assemblies' density
decreasing at their destruction under the action of shear strain [9], or by the change of
the relaxation spectrum [10], or by the distortion of the polymer chain links
distribution function relatively to its center of gravity [11]. A gradient dependence of
the viscosity is described by the expression [11]: (3) It was greatly recognized the
universal scaling ratio [1, 5]: (4) in which the dimensionless function has the
asymptotes f(0) = 1, f(x)x>>1 = x–g, g = 0,8. Hence, both expressions (3) and (4)
declare the gradient dependence of h by the function of the one non–dimensional
parameter gt*. However, under the theoretical estimation of h and t* as a function of N
there are contradictions between the experimentally determined ratio (1) and b = 3,4.
Thus, the analysis of the entrainment of the surrounding chains under the movement
of some separated chain by [12] leads to the dependencies but . At the analysis [13] of
the self–coordinated movement of a chain enclosing into the tube formed by the
neighbouring chains it was obtained the , . The approach in [14] which is based on the
conception of the reptational mechanism of the polymeric chain movement gives the
following dependence . So, the index b = 3,4 in the ratio (1) from the point of view of
authors [2] remains by one among the main unsolved tasks of the polymers' physics.
Summarizing the above presented short review, let us note, that the conception about
the viscosity–elastic properties of the polymeric solutions accordingly to the Maxwell's
equation should be signified the presence of two components of the effective viscosity,
namely: the frictional one, caused by the friction forces only, and the elastic one,
caused by the shear strain of the conformational volume of macromolecules. But in
any among listed above theoretical approaches the shear strain of the conformational
volumes of macromolecules was not taken into account. The sustained opinion by
authors [3-4] that the shear strain is visualized only in the strong hydrodynamic flows
whereas it can be neglected at little g, facilitates to this fact. But in this case the
inverse effect should be observed, namely an increase of h at the g enlargement.
These contradictions can be overpassed, if to take into account [15, 16], that, although
at the velocity gradient of hydrodynamic flow increasing the external action leading to
the shear strain of the conformational volume of polymeric chain is increased, but at



the same time, the characteristic time of the external action on the rotating polymeric
ball is decreased; in accordance with the kinetic reasons this leads to the decreasing
but not to the increasing of the shear strain degree. Such analysis done by authors
[15-17] permitted to mark the frictional and the elastic components of the viscosity
and to show that exactly the elastic component of the viscosity is the gradiently
dependent value. The elastic properties of the conformational volume of polymeric
chains, in particular shear modulus, were described early by authors [18-19] based on
the self–avoiding walks statistics (SAWS). Here presented the experimental data
concerning to the viscosity of the concentrated solutions of styrene in toluene and also
of the melt and it is given their interpretation on the basis of works [15-19].
Experimental data and starting positions In order to obtain statistically significant
experimental data we have studied the gradient dependence of the viscosity for the
concentrated solution of polystyrene in toluene at concentrations 0,4×105; 0,5×105
and 0,7×105 g/m3 for the four fractions of polystyrene characterizing by the apparent
molar weights M = 5,1×104; M = 4,1×104; M = 3,3×104 and M = 2,2×104 g/mole.
For each pair of values r and M the gradient dependence of the viscosity has been
studied at fourth temperatures 25 0C, 30 0C, 35 0C and 40 0C. The experiments have
been carried out with the use of the rotary viscometer RHEOTEST 2.1 equipped by the
working cylinder having two rotary surfaces by diameters d1 = 3,4×10–2 and d2 =
3,9×10–2 m. Results and discussion: concentrated solutions Initial statements Typical
dependences of viscosity η of solution on the angular velocity w (turns/s) of the
working cylinder rotation are represented on Fig. 1-3. Generally it was obtained the 48
curves of h(w). For the analysis of the experimental curves of h(w) it was used the
expression [15, 20]: (5) in which η is the measured viscosity of the solution at given
value ω of the working cylinder velocity rate; ηf, and ηe are frictional and elastic
components of η; (6) where is the characteristic time of the shear strain of the
conformational volume for m-ball of intertwined polymeric chains; is the characteristic
time of the external action of gradient rate of the hydrodynamic flow on the m-ball.
The notion about the m-ball of the intertwined polymeric chains will be considered
later. The shear strain of the conformational volume of m–ball and its rotation is
realized in accordance with the reptational mechanism presented in ref. [2], i. e. via
the segmental movement of the polymeric chain, that is why is also the characteristic
time of the own, i. e. without the action g, rotation of m–ball [17]. Fig. 1 ‒ Experimental
(points) and calculated in accordance with the equation (5) (curves) dependencies of
the effective viscosity on the rotation velocity of the working cylinder: ρ = 4.0·105
g/m3, M = 4.1·104 g/mole, T = 25 ÷ 40 0C The expression (5) leads to the two
asymptotes: at at So, it is observed a general regularity of the effective viscosity
dependence on the rotation velocity ω of the working cylinder for diluted,
concentrated solutions and melts. Under condition, that , that is at , the effective
viscosity is equal to a sum of the frictional and elastic components of the viscosity, and
under condition the measurable viscosity is determined only by a frictional component



of the viscosity. In accordance with eq. (5) the effective viscosity h(w) is a function on
three parameters, namely , and b. They can be found on a basis of the experimental
values of h(w) via the optimization method in program ORIGIN 5.0. As an analysis
showed, the numerical values of are easy determined upon a plateau on the curves
h(w) accordingly to the condition (see Figures 1-3). However, the optimization method
gave not always the correct values of and b. There are two reasons for this. Firstly, in a
field of the the uncertainty of h(w) measurement is sharply increased since the
moment of force registered by a device is a small. Secondly, in very important field of
the curve transition h(w) from the strong dependence of h on w to the weak one the
parameters and b are interflowed into a composition b, i. e. they are by one
parameter. Really, at the condition decomposing the exponents into (5) and limiting by
two terms of the row , we will obtained . Due to the above–mentioned reasons the
optimization method gives the values of and b depending between themselves but
doesn't giving the global minimum of the errors functional. That is why at the
estimation of and b parameters it was necessary sometimes to supplement the
optimization method with the «manual» method of the global minimum search varying
mainly by the numerical estimation of . Fig. 2 - Experimental (points) and calculated in
accordance with the equation (5) (curves) dependencies of the effective viscosity on
the rotation velocity of the working cylinder: ρ = 5.0·105 g/m3, M = 5.1 ÷ 2.2·104
g/mole, T = 25 0C Fig. 3 - Experimental (points) and calculated in accordance with the
equation (5) (curves) dependencies of the effective viscosity on the rotation velocity of
the working cylinder: ρ = 4.0·105 ¸ 7.0·105 g/m3, M = 3.3·104 g/mole, T = 25 0C As
we can see from the Figures 1-3, calculated curves η(ω) accordingly to the equation
(5) and found in such a way parameters ηf, ηe and b, are described the experimental
values very well. The results of ηf, ηe and b numerical estimations for the all 48
experimental curves η(ω) are represented in Table 1. The mean-square standard
deviations of the ηf, ηe and b calculations indicated on the Figures. A review of these
data shows that the all three parameters are the functions on the concentration of
polymer into solution, on the length of a chain and on the temperature. But at this, the
and are increased at the r and M increasing and are decreased at the T increasing
whereas the b parameter is changed into the opposite way. The analysis of these
dependencies will be represented further. Here let us present the all needed for this
analysis determinations, notifications and information concerning to the concentrated
polymeric solutions. Investigated solutions of the polystyrene in toluene were
concentrated; since the following condition was performing for them: , (7) where is a
critical density of the solution per polymer corresponding to the starting of the
polymeric chains conformational volumes overlapping having into diluted solution the
conformation of Flory ball by the radius , (8) here a is a length of the chain's link. It's
followed from the determination of , (9) where M0 is the molar weigh of the link of a
chain. Taking into account the eq. eq. (8) and (9) we have: , (10) where (11) can be
called as the density into volume of the monomeric link. In accordance with the



SARWS [19] the conformational radius Rm of the polymeric chain into concentrated
solutions is greater than into diluted ones and is increased at the polymer
concentration increasing. Moreover, not one, but m macromolecules with the same
conformational radius are present into the conformational volume . This leads to the
notion of twisted polymeric chains m–ball for which the conformational volume is
general and equally accessible. Since the m–ball is not localized with the concrete
polymeric chain, it is the virtual, i. e. by the mathematical notion. It is followed from
the SARWS [19]: (12) at , (13) thus, it can be written (14) Table 1 - Optimization
parameters ηf, ηe and b in equation (5) ρ∙10–5, g/m3 4,0 5,0 7,0 T, 0C M∙104 g/mole
5,1 4,1 3,3 2,2 5,1 4,1 3,3 2,2 5,1 4,1 3,3 2,2 25 ηf∙, Pa∙s 0,35 0,19 0,16 0,06 1,11
0,69 0,43 0,36 6,50 2,66 2,64 0,86 ηe, Pa∙s 1,40 0,73 0,33 0,09 2,50 1,10 0,87 0,35
7,60 3,75 2,37 1,50 b∙103, s–1 1,15 3,37 4,20 32,3 1,66 1,02 2,91 7,31 0,36 0,76 1,50
2,44 30 ηf∙, Pa∙s 0,31 0,17 0,14 0,05 1,00 0,62 0,36 0,24 4,95 2,11 2,03 0,68 ηe, Pa∙s
0,95 0,57 0,25 0,06 1,30 0,76 0,52 0,32 4,05 2,21 1,86 1,00 b∙103, s–1 1,38 4,30 5,90
35,0 2,23 1,80 3,14 8,69 0,72 0,83 1,70 2,65 35 ηf∙, Pa∙s 0,19 0,13 0,11 0,04 0,68
0,50 0,26 0,19 4,07 1,85 1,45 0,43 ηe, Pa∙s 0,60 0,39 0,21 0,05 0,90 0,35 0,23 0,22
3,50 1,80 1,59 0,79 b∙103, s–1 3,67 5,80 6,37 49,0 2,41 3,56 4,60 9,10 0,88 0,96 1,93
3,20 40 ηf∙, Pa∙s 0,17 0,12 0,10 0,04 0,56 0,42 0,22 0,17 2,91 1,46 0,98 0,27 ηe, Pa∙s
0,40 0,19 0,13 0,03 0,65 0,29 0,15 0,12 2,01 1,39 1,19 0,57 b∙103, s–1 5,35 6,60 6,90
73,9 2,67 5,60 5,60 16,8 1,33 1,41 2,27 4,24 The shear modulus for the m–ball was
determined by the expression [19]: (15) and, as it can be seen, doesn't depend on the
length of a chain into the concentrated solutions. Characteristic time of the rotary
movement of the m–ball and, respectively its shear, in accordance with the prior work
[17] is equal to (16) Let us compare the with the characteristic time of the rotary
movement of Flory ball into diluted solution [17]: . (17) In these expressions and are
characteristic times of the segmental movement of the polymeric chains and and are
their form factors into concentrated and diluted solutions respectively. Let us note
also, that the expressions (16) and (17) are self–coordinated since at the expression
(16) transforms into the eq. (17). The form factors and are determined by a fact how
much strong the conformational volume of the polymeric chain is strained into the
ellipsoid of rotation, flattened or elongated one as it was shown by author [21].
Frictional component of the effective viscosity In accordance with the data of Table 1
the frictional component of the viscosity strongly depends on a length of the polymeric
chains, on their concentration and on the temperature. The all spectrum of
dependence on N, and T we will be considered as the superposition of the fourth
movement forms giving the endowment into the frictional component of the solution
viscosity. For the solvent such movement form is the Brownian movement of the
molecules, i. e. their translation freedom degree: the solvent viscosity coefficient will
be corresponding to this translation freedom degree. The analogue of the Brownian
movement of the solvent molecules is the segmental movement of the polymeric chain
which is responsible for its translation and rotation movements and also for the shear



strain. The viscosity coefficient will be corresponding to this segmental movement of
the polymeric chain. Under the action of a velocity gradient g of the hydrodynamic
flow the polymeric m–ball performs the rotary movement also giving the endowment
into the frictional component of the viscosity. In accordance with the superposition
principle the segmental movement and the external rotary movement of the polymeric
chains will be considered as the independent ones. In this case the external rotary
movement of the polymeric chains without taking into account the segmental one is
similar to the rotation of m–ball with the frozen equilibrium conformation of the all m
polymeric chains represented into m–ball. This corresponds to the inflexible Kuhn's
wire model [22]. The viscosity coefficient will be corresponding to the external rotating
movement of the m–ball under the action of g. The all listed movement forms are
enough in order to describe the diluted solutions. However, in a case of the
concentrated solutions it is necessary to embed one more movement form, namely,
the transference of the twisted between themselves polymeric chain one respectively
another in m–ball. Exactly such relative movement of the polymeric chains contents
into itself the all possible linkages effects. Accordingly to the superposition principle
the polymeric chains movement does not depend on the above–listed movement
forms if it doesn't change the equilibrium conformation of the polymeric chains in
m–ball. The endowment of such movement form into let us note via . Not all the listed
movement forms give the essential endowment into the , however for the generality
let us start from the taking into account of the all forms. In such a case the frictional
component of a viscosity should be described by the expression: , (18) or , (19) here is
the volumetric part of the polymer into solution. It is equal to the volumetric part of the
monomeric links into m–ball; that is why it can be determined by the ratio: , (20) in
which is the partial–molar volume of the monomeric link into solution. Combining the
eq. eq. (9)–(14) and eq. (20) we will obtain: . (21) The ratio of should be near to the
density of the liquid monomer. Assuming of this approximation, we have: . (22) At the
rotation of m–ball under the action of g the angular rotation rate for any polymeric
chain is the same but their links depending on the remoteness from the rotation center
will have different linear movement rates. Consequently, in m–ball there are local
velocity gradients of the hydrodynamic flow. Let represents the averaged upon m–ball
local velocity gradient of the hydrodynamic flow additional to g. Then, the tangential or
strain shear formed by these gradients and at the rotation movement of m–ball in the
medium of a solvent will be equal to: . (23) However, the measurable strain shear
correlates with the well-known external gradient g that gives another effective
viscosity coefficient: (24) Comparing the eq. (23) and eq. (24) we will obtain . (25)
Noting (26) instead of the eq. (19) we will write (27) The endowment of the relative
movement of twisted polymeric chains in m–ball into the frictional component of the
viscosity should be in general case depending on a number of the contacts between
monomeric links independently to which polymeric chain these links belong. That is
why we assume: . (28) The efficiency of these contacts or linkages let us estimate



comparing the characteristic times of the rotation (shear) of m–ball into concentrated
solution and polymeric ball into diluted solution determined by the expressions (16)
and (17). Let's note that in accordance with the determination done by author [17] is
the characteristic time not only for m–ball rotation, but also for each polymeric chain in
it. Consequently, is the characteristic time of the rotation of polymeric chain twisted
with others chains whereas is the characteristic time of free polymeric chain rotation.
The above–said permits to assume the ratio as a measure of the polymeric chains
contacts or linkages efficiency and to write the following in accordance with the (16)
and (17): (29) Taking into account the (22) and combining the (28) and (29) into one
expression we will obtain: (30) Here the coefficient of proportionality includes the ratio
, which should considerably weaker depends on and N that the value . Substituting the
(30) into (27) with taking into account the (22) we have: (31) Let us estimate the
endowment of the separate terms in eq. (31) into . In accordance with Table 1 under
conditions of our experiments the frictional component of the viscosity is changed
from the minimal value » 4×10–2 Pa×s to the maximal one » 6,5 Pa×s. Accordingly to
the reference data the viscosity coefficient of the toluene has the order 5×10–4 Pa×s.
The value of the viscosity coefficient representing the segmental movement of the
polymeric chains estimated by us upon of the diluted solution of polystyrene in toluene
consists of the value by 5×10–3 Pa×s order. Thus, it can be assumed , and it can be
neglected the respective terms in eq. (31). With taking into account of this fact, the eq.
(31) can be rewritten in a form convenient for the graphical test: . (32) On Fig. 4 it is
presented the interpretation of the experimental values of into coordinates of the
equation (32). Fig. 4 - An interpretation of the experimental data of ηf in coordinates of
the equation (32) At that, it were assumed the following values: M = 104,15 g/mole, a
= 1,86×10–10 m under determination of accordingly to eq. (11) and g/m3 for liquid
styrene. As we can, the linear dependence is observed corresponding to eq. (32) at
each temperature; based on the tangent of these straight lines inclination (see the
regression equations on Fig. 4) it were found the numerical values of , the temperature
dependence of which is shown on Fig. 5 into the Arrhenius' coordinates. It is follows
from these data, that the activation energy regarding to the movement of twisted
polymeric chains in toluene is equal to 39,9 kJ/mole. It can be seen from the Fig. 4 and
from the represented regression equations on them, that the values are so little
(probably, Pa×s) that they are located within the limits of their estimation error. This,
in particular, didn't permit us to found the numerical values of the ratio . So, the
analysis of experimental data, which has been done by us, showed that the main
endowment into the frictional component of the effective viscosity of the concentrated
solutions "polystyrene in toluene" has the separate movement of the twisted between
themselves into m–ball polymeric chains. Exactly this determines a strong dependence
of the on concentration of polymer into solution and on the length of a chain . Fig. 5 -
Temperature dependence of the viscosity coefficient in coordinates of the Arrhenius
equation Elastic component of the effective viscosity It is follows from the data of



Table 1, that the elastic component of viscosity is a strong increasing function on
polymer concentration , on a length of a chain N and a diminishing function on a
temperature T. The elastic properties of the conformational state of the m–ball of
polymeric chains are appeared in a form of the resistance to the conformational
volume deformation under the action of the external forces. In particular, the
resistance to the shear is determined by the shear modulus , which for the m–ball was
determined by the expression (15). As it was shown by author [17], the elastic
component of the viscosity is equal to: . (33) The factor of form depends on the
deformation degree of the conformational volume of a ball [17, 21]. Combining the
(15) and (16) into (33) and assuming we will obtain . (34) Comparing the (16) and (34)
we can see, that the known from the reference data ratio is performed but only for the
elastic component of a viscosity. It is follows from the expression (34), that the
parameters and are inseparable; so, based on the experimental values of (see Table 1)
it can be found the numerical values only for the composition . The results of
calculations are represented in Table 2. In spite of these numerical estimations
scattering it is overlooked their clear dependence on T, but not on and N. Table 2 -
Calculated values Lτ, τ/L, τ and L based on the experimental magnitudes ηe and b
ρ∙10–5, g/m3 4,0 5,0 7,0 τ·1010, s L T, 0C M∙104, g/mole 5,1 4,1 3,3 2,2 5,1 4,1 3,3
2,2 5,1 4,1 3,3 2,2 25 (Lτ)ηe∙1010, s 2,63 3,14 2,72 2,99 1,71 1,72 2,61 4,25 1,15
1,29 1,57 4,00 (τ/L)b∙1010, s 3,25 1,81 2,54 0,89 1,17 3,43 1,91 2,06 1,98 1,86 1,38
2,29 τ∙1010, s 2,92 2,38 2,63 1,63 1,41 2,43 2,23 2,96 1,51 1,61 1,47 3,03 2,19 L
0,90 1,32 1,03 1,83 1,21 0,71 1,17 1,44 0,76 0,86 1,07 1,32 1,13 30 (Lτ)ηe∙1010, s
1,75 2,41 2,03 1,96 0,88 1,17 1,54 3,83 0,60 0,75 1,21 2,63 (τ/L)b∙1010, s 2,10 1,56
1,81 0,82 0,87 1,94 1,39 1,73 1,00 1,62 1,22 2,11 τ∙1010, s 2,17 1,94 1,92 1,27 0,88
1,51 1,46 2,57 0,78 0,98 1,21 2,56 1,59 L 0,81 1,24 1,00 1,55 1,00 0,78 1,05 1,49 0,78
0,60 1,00 1,12 1,04 35 (Lτ)ηe∙1010, s 1,09 1,62 1,67 1,61 0,60 0,53 0,67 2,58 0,51
0,60 1,02 2,04 (τ/L)b∙1010, s 1,01 1,16 1,67 0,59 0,79 0,98 1,21 1,65 0,81 1,35 1,09
1,75 τ∙1010, s 1,05 1,37 1,67 0,97 0,70 0,72 0,90 2,06 0,64 0,90 1,05 1,89 1,16 L
1,04 1,18 1,00 1,65 0,87 0,73 0,74 1,25 0,79 0,67 0,97 1,08 1,00 40 (Lτ)ηe∙1010, s
0,72 0,78 1,03 0,96 0,43 0,44 0,43 1,40 0,29 0,46 0,75 1,46 (τ/L)b∙1010, s 0,70 1,01
1,54 0,39 0,73 0,62 1,00 0,90 0,54 0,92 0,91 1,31 τ∙1010, s 0,71 0,89 1,26 0,61 0,56
0,52 0,66 1,12 0,40 0,65 0,83 1,38 0,80 L 1,01 0,88 0,82 1,57 0,77 0,84 0,66 1,25 0,73
0,71 0,91 1,06 0,93 Parameter b In accordance with the determination (6), the b
parameter is a measure of the velocity gradient of hydrodynamic flow created by the
working cylinder rotation, influence on characteristic time of action on the shear strain
of the m–ball and its rotation movement. Own characteristic time of m–ball shear and
rotation accordingly to (16) depends only on , N and T via . It is follows from the
experimental data (see Table 1) that the b parameter is a function on the all three
variables , N and T, but, at that, is increased at T increasing and is decreased at and N
increasing. In order to describe these dependences let us previously determine the
angular rate (s–1) of the strained m–ball rotation with the effective radius of the



working cylinder by diameter d contracting with the surface: (35) Here is appeared due
to the difference in the dimensionalities of and . Let us determine the as the reverse
one : (36) Accordingly to (36) is a time during which the m–ball with the effective
radius under the action of working cylinder by diameter d rotation will be rotated on
the angle equal to the one radian. Let us note, that the was determined by authors
[17] also in calculation of the m–ball turning on the same single angle. Since in our
experiments the working cylinder had two rotating surfaces with the diameters d1 and
d2, the value was averaged out in accordance with the condition d = (d1 + d2)/2; so,
respectively, the value was averaged out too: . (37) So, is in inverse proportion to ;
therefore through the constant device it is in inverse proportion to : . However, as it
was noted, in m–ball due to the difference in linear rates of the polymeric chains links
it is appeared the hydrodynamic interaction which leads to the appearance of the
additional to local averaged upon m–ball velocity gradient of the hydrodynamic flow .
This local gradient acts not on the conformational volume of the m–ball but on the
monomeric framework of the polymeric chains (the inflexible Kuhn's wire model [22]).
That is why the endowment of into characteristic time depends on the volumetric part
of the links into the conformational volume of m–ball, i. e. . Therefore, it can be written
the following: , (38) that with taking into account of eq. (37) leads to the expression .
(39) Combining the (16) and (39) into (6) we will obtain . (40) As we can see, here the
parameters and are also inseparable and can not be found independently one from
another. That is why based on the experimental data presented in Table 1 it can be
found only the numerical values of the ratio . After the substitution of values a =
1,86×10–10 m, d1= 3,4×10–2 m, d2= 3,3×10–2 m we have . (41) As it was marked,
we could not estimate the numerical value of due to the smallness of the value lying in
the error limits of its measuring. That is why, we will be consider the ratio as the fitting
parameter starting from the consideration that the concentrated solution for polymeric
chains is more ideal than the diluted one and, moreover, the m–ball is less strained
than the single polymeric ball. That is why, was selected in such a manner that the
factor of form was near to the 1. This lead to the value =25. The calculations results of
accordingly to equation (41) with the use of experimental values from Table 1 and also
the values =25 are represented in Table 2. They mean that the is a visible function on
a temperature but not on a and N. On a basis of the independent estimations of and it
was found the values of and , which also presented in Table 2. An analysis of these
data shows that with taking into of their estimation error it is discovered the clear
dependence of and L on T, but not on and N. Especially clear temperature dependence
is visualized for the values , obtained via the averaging of at giving temperature for
the all values of and N (Table 2). The temperature dependence of into the coordinates
of the Arrhenius' equation is presented on Figure 6. Fig. 6 - Temperature dependence
of the average values of the characteristic time τ of the segmental movement of
polymeric chain in coordinates of the Arrhenius equation Conclusions Investigations of
a gradient dependence of the effective viscosity of concentrated solutions of



polystyrene permitted to mark its frictional ηf and elastic ηe components and to study
of their dependence on a length of a polymeric chain N, on concentration of polymer ρ
in solution and on temperature Т. It was determined that the main endowment into the
frictional component of the viscosity has the relative motion of the intertwined
between themselves in m-ball polymeric chains. An efficiency of the all possible
gearings is determined by the ratio of the characteristic times of the rotation motion of
intertwined between themselves polymeric chains in m-ball and Flory ball . This lead to
the dependence of the frictional component of viscosity in a form for concentrated
solutions, which is agreed with the experimental data. It was experimentally confirmed
the determined earlier theoretical dependence of the elastic component of viscosity for
concentrated solutions , that is lead to the well-known ratio , which is true, however,
only for the elastic component of the viscosity. On a basis of the experimental data of
ηе and b it were obtained the numerical values of the characteristic time τm of the
segmental motion of polymeric chains in concentrated solutions. As the results
showed, τm doesn’t depend on N, but only on temperature. The activation energies
and entropies of the segmental motion were found based on the average values of . An
analysis which has been done and also the generalization of obtained experimental
data show, that as same as in a case of the low-molecular liquids, an investigation of
the viscosity of polymeric solutions permits sufficiently accurately to estimate the
characteristic time of the segmental motion on the basis of which the diffusion
coefficients of the polymeric chains in solutions can be calculated; in other words, to
determine their dynamical characteristics.


