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Исследовано применение методов машинного обучения при диагностике рака молочной железы. Проводится 

анализ формирования признакового пространства для классификации температурных аномалий, вызванных ра-

ком молочной железы. Для анализа использовался метод формирования признакового пространства, основан-

ный на методе добавления признаков Sequential Floating Forward Selection (SFFB). В качестве набора данных 

использовались результаты обследования молочных желез, проведённых методом микроволной радиотермо-

метрии. Для объективной оценки обобщающей способности моделей выборка разделена на обучающую и те-

стовую части. На тестовых данных, не участвовавших в процессе обучения и отбора признаков, проводилась 

итоговая верификация результатов. Анализ эффективности метода SFFB проводился с использованием раз-

личных вариаций критериев отбора, что позволило многосторонне оценить его гибкость. В частности, опти-

мизация выполнялась по F1-показателю, а также по комбинированной метрике, агрегирующей ключевые для 

системы искусственного интеллекта показатели: точность и полнота. Применение алгоритма SFFB позволило 

сократить размерность признакового пространства без существенного ущерба для качества классификации. 

Исходный набор, из 70 признаков, сокращен до 14 наиболее информативных и статистически значимых пере-

менных. Такой результат подтверждает эффективность метода SFFB при сокращении размерности и его 

способность устранять избыточные признаки. Полученные результаты демонстрируют, что даже при значи-

тельном уменьшении размерности можно сохранить почти исходный уровень точности классификации, обес-

печивая более быстрые вычисления. Кроме того, модели с меньшим количеством признаков обладают гораздо 

лучшей интерпретируемостью, что является критически важным фактором для принятия обоснованных кли-

нических решений в области медицинской диагностики, где понимание логики классификации часто не менее 

ценно, чем результат. 
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The application of machine learning methods in the diagnosis of breast cancer is investigated. The analysis of the for-

mation of the feature space for the classification of temperature anomalies caused by breast cancer is carried out. The 

method of feature space formation based on the Sequential Floating Forward Selection (SFFB) feature addition method 

was used for the analysis. The results of breast examinations performed by microwave radiothermometry were used as a 

data set. For an objective assessment of the generalizing ability of the models, the sample is divided into training and 

test parts. The final verification of the results was carried out on the test data that was not involved in the learning and 

selection process. The effectiveness of the SFFB method was analyzed using various variations of the selection criteria, 

which allowed a comprehensive assessment of its flexibility. Optimization was performed using the F1 indicator, as well 

as a combined metric that aggregates key indicators for the artificial intelligence system: accuracy and completeness. 

The use of the SFFB algorithm made it possible to reduce the dimension of the feature space without significant damage 

to the classification quality. The initial set of 70 features has been reduced to 14 of the most informative and statistically 

significant variables. This result confirms the effectiveness of the SFFB method in reducing dimensionality and its ability 

to eliminate redundant features. The results obtained demonstrate that even with a significant reduction in dimension, it 

is possible to maintain almost the initial level of classification accuracy, providing faster calculations. In addition, mod-

els with fewer features have much better interpretability, which is a critical factor for making informed clinical decisions 

in the field of medical diagnostics, where understanding the logic of classification is often no less valuable than the result. 
 

Введение 

Ключевым этапом построения моделей в машин-

ном обучении является формирование признакового 

пространства. От адекватности и полноты этого про-

странства зависят последующие этапы анализа и ито-

говое качество модели. Эта проблема носит общий 

характер в разных прикладных областях: от оптими-

зации транспортных потоков и прогнозирования 

свойств химических соединений до решения задач 

медицинской диагностики. 

В контексте медицинской диагностики, где данные 

характеризуются высокой вариабельностью, шумом и 

сложной структурой, задача формирования признаков 

становится особенно значимой. Правильно сконструи-

рованные признаки позволяют не только повысить 

точность диагностических алгоритмов, но и выявить 

новые, клинически значимые переменные. Современ-

ные методы машинного обучения и анализа данных 

имеют всё более значимую роль для обследований па-

циентов [1-4]. Качество моделей машинного обучения 

зависит от того, какие признаки (клинические, лабора-
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торные, морфологические, радиологические) исполь-

зуются при обучении [5]. Избыточные или коррели-

рованные признаки снижают точность алгоритмов, 

увеличивают время обработки данных и усложняют 

интерпретацию результатов. При решении задач с 

применением методов машинного обучения важной 

задачей является формирование признакового про-

странства.  Поэтому оптимизация признакового про-

странства становится ключевым шагом для построе-

ния надёжных и простых в использовании диагности-

ческих систем. Методы машинного обучения позво-

ляют ускорить интерпретацию медицинских изобра-

жений и клинических показателей, обеспечивая каче-

ственную поддержку врачебных решений даже при 

высокой загрузке медицинских учреждений. Такие 

интерпретации могут носить только предваритель-

ный характер и давать дополнительную информацию 

врачам либо применяться в массовых обследованиях 

при диспансеризации для выявления группы риска по 

различным заболеваниям. 

В медицинской диагностике важна не только вы-

сокая точность, но и возможность работать в усло-

виях ограниченных ресурсов, включая время, техно-

логические мощности и квалифицированный персо-

нал. В некоторых регионах наблюдается дефицит ме-

дицинских кадров, из-за этого растёт нагрузка на име-

ющийся персонал [6-8]. Также, некоторые виды диа-

гностики, такие как маммография имеет доказанную 

эффективность, но обладает низкой точностью для 

ряда групп пациентов, например, до 62÷68 % у жен-

щин с плотной тканью молочной железы [9], а для 

женщин младше 40 лет вообще не применяется. При 

этом существуют и другие методы, такие как радио-

термометрия, в основе которого содержится принцип 

измерения температурных полей человека, который 

доказал эффективность при диагностике рака молоч-

ной железы [10]. При этом исследования необходимо 

интерпретировать врачом-специалистом, но в связи с 

высокой нагрузкой, необходимо ускорить этот про-

цесс, при этом не снизив точность заключений. 

Использование алгоритмов, основанных на наибо-

лее релевантных признаках, позволяет автоматизиро-

вать часть рутинных процессов и ускорить получение 

выводов, снижая нагрузку на врачей. Оптимизация 

состава признаков обеспечивает возможность выде-

лять наиболее значимые переменные для корректной 

дифференциации доброкачественных и злокачествен-

ных образований, повышая качество клинических ре-

шений.  

Цель исследования заключается в оценке эффек-

тивности критериев оптимизации признакового про-

странства для повышения точности и скорости авто-

матизированной классификации температурных ано-

малий, характерных для рака молочной железы. Осо-

бое внимание уделяется выбору оптимальных инфор-

мативных признаков, которые позволяют макси-

мально эффективно использовать результаты меди-

цинских исследований, снижая вычислительную 

нагрузку и повышая диагностическую ценность полу-

чаемых результатов. 

В рамках работы демонстрируется применение со-

временных алгоритмов оптимизации признаков, поз-

воляющих гибко корректировать набор используемых 

диагностических параметров и избегать локальных ми-

нимумов при поиске оптимальной комбинации призна-

ков. В качестве такого метода выбран SFFS (Sequential 

Floating Forward Selection) [11], который применяется 

к данным радиотермометрии, полученным с использо-

ванием комплекса РТМ-01, предназначенного для ре-

гистрации температурных полей органов человека, в 

частности молочной железы. 

Ряд заболеваний молочной железы характеризуется 

температурными аномалиями [12]. Так, например, доб-

рокачественные образование, такие как локализован-

ный фиброз, липома или грубый послеоперационный 

рубец характеризуются понижением температуры в 

нижнем отделе молочной железы. Другие заболевания, 

например, хронический мастит или киста с воспале-

нием характеризуются повышением температур в ана-

логичном отделе молочной железы. 

Определённые виды рака молочной железы харак-

теризуются ещё более выраженным повышением тем-

пературы и метод радиотермометрии позволяет обна-

руживать их и по ним определять группы риска нали-

чия злокачественного образования [13, 14]. Конечно, с 

высокой долей вероятности по этому методу нельзя ди-

агностировать рак, но он позволяет отделить здоровых 

от потенциальных больных, чтобы уменьшить 

нагрузку на врачей и проводить дополнительные об-

следования более точными методами только для 

группы риска. Поэтому необходима система, которая  

классифицирует такие температурные аномалии. 

Описание набора данных и постановка задачи 

В качестве исходной информации используются ре-

зультаты обследований молочных желез, произведён-

ных на основе комплекса РТМ-01. Данные представ-

ляют измерения молочных желез в инфракрасном, ко-

торый далее называются кожные, и радиодиапазоне, 

который далее называются внутренние, а также дан-

ные, полученные при осмотре пациента врачом. Схема 

измерения показана на рисунке 1. Полученные темпе-

ратурные измерения преобразованы в набор признаков 

в работе [15]. В исходном наборе содержится 62 при-

знака, полученных в результате математического мо-

делирования, например, признак MG001 – это манхэт-

тенское расстояние между векторами значений внут-

ренних температур для правой и левой молочной же-

лезы, а MG006 – разность средних значений внутрен-

них температур правой и левой желез. Также в иссле-

довании [16] выявлены 8 признаков, полученных при 

осмотре пациента врачом, которые в определённой 

степени могут помочь верно классифицировать исход-

ные данные. К таким признакам относятся:  

 возраст, 

 диаметр молочной железы, 

 индекс массы тела, 

 гормональная зависимость, 

 жалобы на боли в груди, 

 количество беременностей, 

 количество рожденных детей, 

 возраст на момент первых родов. 

Именно эти 70 признаков представляют исходный 

набор признаков. 
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Рис. 1 – Схема измерения молочных желез методом радиотермометрии 

Fig. 1 – Breast measurement scheme by radiothermometry 

 

Кроме признаков в наборе данных имеются метки, 

представляющие заключение врача, который опреде-

ляет конкретную молочную железу к одной из шести 

категорий температурных аномалий, которые пред-

ставлены в таблице 1.  

Таблица 1 – Описание категорий состояния мо-

лочных желез 

Table 1 – Description of breast condition categories 

 

Категория Краткое описание 

0 тепловые изменения не выявлены 

1 участок понижения температуры 

2 участок повышения температуры 

3 высокий уровень и внутренней и 

кожной температур без локального 

очага 

4 высокий уровень и внутренней и 

кожной температур с наличие ло-

кального очага понижения темпера-

туры 

5 высокий уровень и внутренней и 

кожной температур с наличие ло-

кального очага повышения темпера-

туры 

 

Как отмечено в источнике [12], присвоение пер-

вых трех категорий происходит в случаях отсутствия 

характерных признаков рака молочной железы. Кате-

гория № 3 предназначена для пациентов, отнесенных 

к группе риска. Категория № 4 присваивается при 

наличии подозрений на онкологическое заболевание. 

Наконец, категория № 5 резервируется для случаев, 

когда у пациентов зафиксированы температурные 

аномалии, однозначно указывающие на наличие 

острого воспаления. 

Исходя из этого 6 категорий преобразованы в 2 по 

следующему принципу: категория 0÷2 – отсутствует 

или слабая тепловая аномалия, обозначим как класс 

0; категория 3÷5 – выраженная тепловая аномалия, 

обозначим как класс 1. 

Таким образом, имеющийся предобработанный 

набор данных, который обозначим как 𝑋 =

(𝑥𝑖𝑗)
𝑖=1 𝑗=1

𝑁      𝑑
, где 𝑋 ∈ ℝ𝑁×𝑑 где N = 9310 представляет 

количество наблюдений, d = 70 – количество призна-

ков. Каждому 𝑥𝑖  =  (𝑥𝑖𝑗)
𝑗=1

𝑑
     приписана метка 

yi∈{0,1}, которая показывает номер класса, отражаю-

щей наличие температурных аномалий в молочной же-

лезе, i = 1, …, N.  Далее обозначим вектор отбора при-

знаков 𝑠 ∈ {0,1}𝑑, где 1 означает, что признак j исполь-

зуется для обучения. Через 𝑥𝑖
(𝑠)

 обозначим вектор xi, 

ограниченный выбранными признаками, т.е.  𝑥𝑖
(𝑠)

=

(𝑥𝑖𝑗)
𝑗∈𝐽(𝑠) , 𝐽(𝑠) = {𝑗 ∈ {1, … , 𝑑}|𝑠𝑗 = 1}. 

Далее обозначим через 𝐼𝑘 = {𝑖 ∈ 𝐼|𝑦𝑖 = 𝑘}, где I = 

{1, …, N}, k = 0,1. 

Далее набор данных Х разбивается на 2 выборки 

(обучающую Xtrain и тестовую Xtest) так, что в каждой со-

храняется исходное распределение классов, т. е. прове-

дено разбиение 𝐼𝑘 = 𝐼𝑘
𝑡𝑟𝑎𝑖𝑛 ∪ 𝐼𝑘

𝑡𝑒𝑠𝑡случайным образом 

так, что 𝑛𝑘
𝑡𝑟𝑎𝑖𝑛 ≈ 0,8𝑛𝑘,, где 𝑛𝑘

𝑡𝑟𝑎𝑖𝑛 = |𝐼𝑘
𝑡𝑟𝑎𝑖𝑛|, 𝑛𝑘 =|𝐼𝑘|, и 

𝑋𝑡𝑟𝑎𝑖𝑛 = (𝑥𝑖)𝑖∈𝐼𝑡𝑟𝑎𝑖𝑛, 𝑋te𝑠𝑡 = (𝑥𝑖)𝑖∈𝐼𝑡𝑒𝑠𝑡, где 𝐼𝑡𝑟𝑎𝑖𝑛 =

⋃ 𝐼𝑘
𝑡𝑟𝑎𝑖𝑛𝐶

𝑘=0 , 𝐼𝑡𝑒𝑠𝑡 = ⋃ 𝐼𝑘
𝑡𝑒𝑠𝑡𝐶

𝑘=0 , k = 0,1.  

В итоге получено 2 набора данных 𝑁𝑡𝑟𝑎𝑖𝑛 =
∑ 𝑛𝑘

𝑡𝑟𝑎𝑖𝑛𝐶
𝑘=0 = 7446, 𝑁𝑡𝑒𝑠𝑡 = 𝑁 − 𝑁𝑡𝑟𝑎𝑖𝑛 = 1864. Набор 

данных Xtrain в дальнейшем называется основным. Тесто-

вый набор Ntest никак не будет участвовать в процессе оп-

тимизации признаков, а используется только для про-

верки обобщающей способности модели классификации 

с оптимизированным набором признаков. 

M – модель бинарной классификации.  

Необходимо найти такой бинарный вектор s*, кото-

рый максимизирует F1-меру модели М, обученной на 

соответствующем подмножестве признаков 𝑗, т.е. по-

лучаем следующую задачу оптимизации 

  𝐹1(𝑠) →
𝑠∈{0,1}𝑑

𝑚𝑎𝑥,  (1) 

где F1 мера вычисляется следующим образом:  

𝐹1 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
, где TP – число истинно положи-

тельных, FPi – ложно положительных, FN – ложно от-

рицательных объектов. 
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Описание метода оптимизации 

Для решения задачи используется метод оптими-

зации признакового пространства SFFS [11]. Схема 

работы алгоритма представлена на рисунке 2. 

 

 
Рис. 2 – Схема работы алгоритма оптимизации 

признакового пространства SFFS 

Fig. 2 – The scheme of the feature space optimization 

algorithm SFFS 

 

Ключевой особенностью предложенного метода 

заключается в следующем: двунаправленный поиск – 

вначале добавляется лучший признак, затем проверя-

ется, можно улучшить метрики удалением из выбран-

ных. Алгоритм останавливается, когда добавление 

новых признаков не улучшает заданные метрики. 

При этом метод является эвристическим, поэтому 

не гарантирует оптимальность решения. Может су-

ществовать несколько различных подмножеств при-

знаков, дающих аналогичное или бόльшее значение 

заданной метрики. Если, например, изменить порядок 

отбора признаков, то можно прийти к другому ре-

зультату. 

Кроме нахождения F1 меры для её максимизации 

вычисляются точность и полнота для оценки модели 

по каждому классу  

Полнота вычисляется следующим образом: 

𝑆𝑒𝑛𝑠𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
. Точность вычисляется следующим 

образом: 𝑆𝑝𝑒𝑐𝑖 =  
𝑇𝑁𝑖

𝑇𝑁+𝐹𝑃𝑖
.  

В качестве классификатора использовалась логи-

стическая регрессия, которая задавалась следующей 

формулой: 

𝑃(𝑌 = 1|𝑋) =
1

1+𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛),               (2) 

где P(Y=1│X) – вероятность того, что объект принад-

лежит классу 1, β0, β1,…,βn — параметры модели, зна-

чения которых определяются на этапе обучения. 

Чтобы определить параметры модели необходимо 

максимизировать функцию правдоподобия, которая 

задается формулой ℓ(𝛽) = ∑ [𝑦𝑖 ln(𝑃(𝑦𝑖|𝑥𝑖)) + (1 −𝑁
𝑖=1

𝑦𝑖)ln (1 − 𝑃(𝑦𝑖|𝑥𝑖))], 
где N – количество примеров в обучающей выборке, 

P(yi│xi) – вероятность того, что i-й объект принадлежит 

положительному классу. 

Также использовался метод кросс-валидации для 

оценки качества обучения модели классификатора (2). 

Более подробно итерации метода SFFS (рис. 2) за-

ключаются в следующем. 

Инициализация. 

В начале полагается, что sj = 0, j = 1, …, d. 

Шаг 1. 

1) На каждой итерации добавляется в модель (2) по 

одному признаку в порядке номеров j. Пусть на преды-

дущей итерации добавлен признак с номером j – 1. 

Если j – 1 < d, то полагается t = j, T = ∅ – множество 

номеров признаков – кандидатов на добавление, вы-

числяется F1-мера F10 для текущей модели (2). Иначе 

алгоритм завершается (рассмотрены все признаки) 

2) Рассматривается признак с номером t в качестве 

кандидата на добавление в модель (2). Добавляется 

признак с номером t, который в совокупности с дру-

гими, отобранными признаками на предыдущих итера-

циях, используется для обучения (2). При обучении ис-

пользуется кросс-валидация и для каждого фолда вы-

числяется F1-мера. Далее вычисляется средняя F1-

мера по фолдам F1t.Если F1t  > F10, то полагается 𝑇 =
𝑇 ∪ {𝑡}. 

3) Затем повторяется п. 2 для каждого t = j + 1, …, 

d.   

4)  Если T ≠ ∅, то 𝑡∗ = 𝑎𝑟𝑔 max
𝑡∈𝑇

𝐹1𝑡, полагается 

𝑠𝑡∗ = 1, иначе алгоритм завершается. 

Шаг 2. 

Шаг удаления запускается только со второй итера-

ции и действует следующим образом:  

1) На каждой итерации удаляется по одному при-

знаку с номером t и вновь обучается (2) 

2) Если удаление признака с номером t привело к 

тому, что F1-мера стала выше, чем зафиксирована на 

предыдущем этапе, то 𝑠𝑡∗ = 0 и далее не участвует в 

шаге 1.  

3) Если удаление не улучшает результат, то алго-

ритм возвращается к шагу 1. 

Результаты работы 

На первом этапе построена модель с исходным 

набором данных 𝑋𝑡𝑟𝑎𝑖𝑛 = (𝑥𝑖𝑗)
𝑖=1               𝑗=1

𝑁=6861      𝑑=70
 для по-

лучения значений метрик. Так, при полном наборе при-

знаков модель на основе логистической регрессии по-

казала значения: F1 = 0.90, Sens = 0.89, Spec = 0.90 при 

кросс-валидации. 

При использовании оптимизатора SFFS для задачи 

(1) удалось сократить признаковое пространство с 70 

до 22 признаков. В результате остались температурные 

признаки, а также 3 признака на основе данных 

осмотра пациента. При этом значения метрик стали не-

много выше, чем значения у модели с полным набором 

признаков:  F1 = 0.92, Sens = 0.92, Spec = 0.92. На ри-

сунке 3 демонстрируются показатели метрик в про-

цессе оптимизации признакового пространства для мо-

дели оптимизатора с целевой метрикой F1. 
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Рис. 3 – Значения метрик на разных этапах модели 

оптимизации SFFS с целевой метрикой F1 

Fig. 3 – Metric values at different stages of the SFFS 

optimization model with the F1 target metric 

 

Исходя из рисунка 3 видно, что результаты работы 

модели оптимизации практически не изменяются по-

сле первых 14 наиболее эффективных признаков, а 

оставшиеся лишь на доли процентов повышают мет-

рики модели классификации. Поэтому принято реше-

ние использовать именно их как оптимизированный 

набор признаков.  

Для проверки обобщающей способности получен-

ной модели с оптимизированным набором признаков 

проведена оценка значений метрик на ранее отделён-

ном тестовом наборе Xtest, который не участвовал в 

процессе оптимизации признакового пространства. 

Модель с 14-ю оптимизированными признаками по-

казала результаты: F1 = 0.85, Sens = 0.88, Spec = 0.89. 

Для более наглядного ознакомления с результатами 

представлена таблица 2, где первые две строки пред-

ставляют метрики для модели, обученной на полном 

наборе признаков, 3 и 4 строка соответственно, мет-

рики модели с оптимизированным признаковым про-

странством.  

Таблица 2 – Результаты метрик для разных набо-

ров признаков 

Table 2 – Metric results for different feature sets 

Набор признаков F1 Полнота Точность 

70 0.9 0.89 0.91 

70 (на тестовых 

данных) 

0.85 0.86 0.91 

14 (наиболее эф-

фективные) 

0.92 0.92 0.92 

14 (на тестовых 

данных) 

0.85 0.88 0.89 

 

Исходя из полученных результатов можно сделать 

вывод, что модель оптимизации SFFB имеет доста-

точную эффективность и может использоваться для 

оптимизации признакового пространства, в частности 

медицинских данных. 

Заключение 
Проведенное исследование подтвердило высокую 

эффективность метода Sequential Floating Forward 

Selection для оптимизации признакового простран-

ства в задаче медицинской диагностики. Анализ на 

наборе данных микроволновой радиотермометрии 

показал, что применение SFFB позволяет радикально 

сократить размерность признаков с 70 до 14 наиболее 

эффективных, при этом значение метрик практически 

не изменилось. Таким образом, метод SFFB продемон-

стрировал высокую эффективность и способность 

успешно устранять избыточные признаки. Ключевым 

практическим результатом работы является демон-

страция того, что значительное сокращение размерно-

сти не ухудшает диагностическую точность, а также 

обеспечивает важные преимущества: повышение ско-

рости вычислений и улучшение интерпретируемости 

модели. Это делает метод SFFB ценным инструментом 

для построения эффективных и надежных диагности-

ческих систем, где критически важны как точность, так 

и прозрачность принятия решений. 
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