Аннотация и ключевые слова
Аннотация (русский):
В течение последнего десятилетия в современном обществе возросли экологические проблемы, что привело к поиску устойчивых альтернатив для глобального развития. Таким образом, в настоящее время усилились попытки создания новых экологически чистых препаратов. В этой связи, одной из наиболее изученных возможностей по сокращению глобальной зависимости от ископаемых видов топлива является замена материалов, полученных из нефтехимических источников, материалами возобновляемого происхождения, таких как растительные масла. Эти материалы находятся в стадии разработки и конечной целью этих новых исследований могло бы быть сокращение промышленных выбросов углерода в атмосферу и значительное улучшение устойчивости текущих производственных процессов. Универсальность, способность к химическому превращению и возможность модификации растительных масел открывают пути для их использования в качестве полимерных матриц, что используется при синтезе таких полимеров, как термопластичные полиуретаны (ТПУ). Таким образом, основной целью настоящей работы является разработка термопластичных композиций на основе растительного масла, используемого в качестве полимерной матрицы. В статье представлены результаты изучения химической структуры, морфологии, температурного и механического поведения различных био-ТПУ.

Ключевые слова:
био-полиолы, димеры жирных кислот, полиуретаны, распределение жестких сегментов, взамосвязь структура-свойство, bio-based polyols, dimmer fatty acids, polyurethanes, hard segment distribution, structure-property relationships
Список литературы

1. G. Lligadas, J. C. Ronda, M. Galià, V. Cádiz. Plant Oils as Platform Chemicals for Polyurethane Synthesis: Current-State-of-the-Art. 2010, Biomacromolecules, 11:2825-2835

2. U. Biermann, W. Friedt, S. Lang, W. Luhs, G. Machmuller, J. O. Metzger, M. R. G Klaas, H. J. Schafer, M. P. Scheider. New Syntheses with Oils and Fats as Renewable Raw Materials for the Chemical Industry. 2000, Angewandte Chemie International Edition, 39:2206-2224.

3. L. Montero de Espinosa, M.A.R. Meier. Plant oils: the perfect renewable resource for polymer science?! 2011, European Polymer Journal, 47:837-852

4. A. Behr, J. P. Gomes. The refinement of renewable resources: new important derivatives of fatty acids and glycerol. 2010, European Journal of Lipid Science and Technology, 112(1):31-50.

5. A. Kockritz, S. N. M. Khot, J. J. Lascala, E. Can, S. S. Morye, G. I. Williams, G. R. Palmese, S. H. Kusefoglu, R. P. Wool. Development and application of triglyceride-based polymers and composites. 2001, Journal of Applied Polymer Science, 82(3):703-723.

6. M.T. Benaniba, N. Belhaneche-Bensemra, G. Gelbard. Stabilizing effect of epoxidized sunflower oil on the thermal degradation of poly(vinyl chloride). 2001, Polymer Degradation and Stability, 74:501-505.

7. M.O. Boussoum, D. Atek, N. Belhaneche-Bensemra. Interactions between poly(vinyl chloride) stabilised with epoxidised sunflower oil and food simulants. 2006, Polymer Degradation and Stability, 91:579-584.

8. J. S. Choi, W. H. Park. Thermal and mechanical properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) plasticized by biodegradable soybean oils. 2003, Macromolecular Symposium, 197:65-76.

9. M.A. Semsarzadeh, M. Mehrabzadeh, S.S. Arabshahi. Mechanical and Thermal Properties of the Plasticized PVC-ESBO. 2005, Iranian Polymer Journal, 14(9):769-773.

10. F. Ali, Y. W. Chang, S. C. Kang, J. Y. Yoon. Thermal, mechanical and rheological properties of poly(lactic acid)/epoxidized soybean oil blends. 2009, Polymer Bulletin, 62(1):91-98.

11. P. Karmalm, T. Hjertberg, A. Jansson, R. Dahl. Thermal stability of poly(vinyl chloride) with epoxidised soybean oil as primary plasticizer. 2009, Polymer Degradation and Stability, 94:2275-2281.

12. M. A. R. Meier, J. O. Metzger, U. S. Schubert. Plant oil renewable resources as green alternatives in polymer science. 2007, Chemical Society Reviews, 36:1788-1802.

13. F. S. Güner, Y. Yagci, A. T. Erciyes. Polymers from trygliceride oils. 2006, Progress in Polymer Science, 31:633-670.

14. Y. Lu, R. C. Larock. Novel polymeric materials from vegetable oils and vinyl monomers: Preparation, properties, and applications. 2009, ChemSusChem, 2(2):136-147.

15. S. N. Khot, J. J. Lascala, E. Can, S. S. Morye, G. I. Williams, G. R. Palmese, S. H. Kusefoglu, R. P. Wool. Development and application of triglyceride-based polymers and composites. 2001, Journal of Applied Polymer Science, 82(3):703-723.

16. E. Hablot, D. Zheng, M. Bouquey, L. Averous. Polyurethanes Based on Castor Oil: Kinetics, Chemical, Mechanical and Thermal Properties. 2008, Macromolecular Materials and Engineering, 293(11):922-929.

17. Z. Liu, S. Z. Erhan. “Green” composites and nanocomposites from soybean oil. 2008, Materials Science and Engineering A, 483-484:708-711.

18. K. M. Doll, S. Z. Erhan. The improved synthesis of carbonated soybean oil using supercritical carbon dioxide at a reduced reaction time. 2005, Green Chemistry, 7:849-854.

19. C. Meiorin, M. I. Aranguren, M. A. Mosiewicki. Smart and structural thermosets from the cationic copolymerization of a vegetable oil. 2011, Journal of Applied Polymer Science, 124(6):5071-5078.

20. X. Kong, T. S. Omonov, J. M.Curtis. The development of canola oil based bio-resins. 2012, Lipid Technology, 24(1):7-10.

21. J. R. Kim, S. Sharma. The development and comparison of bio-thermoset plastics from epoxidized plant oils. 2012, Industrial Crops and Products, 36(1):485-499.

22. R. L. Quirino, J. Woodford, R. C. Larock. Soybean and linseed oil-based composites reinforced with wood flour and wood fibers. 2012, Journal of Applied Polymer Science 124(2):1520-1528.

23. R. B. Seymour, C. E. Carraher. Polymer Chemistry - An introduction. 2nd Edition. Marcel Dekker, Basel, Suiza, 1988.

24. M. Ionescu. Chemistry and Technology of Polyols for Polyurethanes. Rapra Technology Limited, Shropshire, United Kingdom, 2005.

25. U. Meier-Westhues, Polyurethanes. Coatings, adhesives and sealants. Vincentz Network, Hannover, Alemania, 2007.

26. T. Tawa, S. Ito. The role of hard segments of aqueous polyurethane-urea dispersion in determining the colloidal characteristics and physical properties. 2006, Polymer Journal, 38(7):686-693.

27. R. P. Wool, X. S. Sun. Bio-Based Polymers and Composites. Elsevier Academic Press, Burlington, MA, United States, 2005.

28. S. Yamasaki, D. Nishiguchi, K. Kojio, M. Furukawa. Effects of Polymerization Method on Structure and Properties of Thermoplastic Polyurethanes. 2007, Journal of Polymer Science B: Polymer Physics, 45:800-814.

29. Z. S. Petrovic, M. J. Cevallos, I. Javni, D. W. Schaefer, R. Justice. Soy-oil-based segmented polyurethanes. 2005, Journal of Polymer Science B, 43:3178-3190.

30. C. Bueno-Ferrer, E. Hablot, F. Perrin-Sarazin, M.C. Garrigós, A. Jiménez, L. Avérous. Structure and morphology of new bio-based thermoplastic polyurethanes obtained from dimer fatty acids. 2012, Macromolecular Materials and Engineering, 297(8):777-784.

31. L. Irusta, M. J. Fernandez-Berridi. Aromatic poly(ester-urethanes): effect of the polyol molecular weight on the photochemical behaviour. 2000, Polymer, 41:3297-3302.

32. L. Irusta, J. J. Iruin, G. Mendikute, M. J. Fernández-Berridi. Infrared spectroscopy studies of the self-association of aromatic urethanes. 2005, Vibrational Spectroscopy, 39:144-150.

33. B. B. R. Silva, R. M. C. Santana, M. M. C. Forte. A solventless castor oil-based PU adhesive for wood and foam substrates. 2010, International Journal of Adhesion and Adhesives, 30:559-565.

34. I. Javni, Z. Petrovic, A. Guo, R. Fuller. Thermal stability of polyurethanes based on vegetable oils. 2000, Journal of Applied Polymer Science, 77:1723-1734.

35. P. Król. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. 2007, Progress in Materials Science, 52:915-1015.

36. M. A. Corcuera, L. Rueda, B. Fernandez d’Arlas, A. Arbelaiz, C. Marieta, I. Mondragon, A. Eceiza. Microstructure and properties of polyurethanes derived from castor oil. 2010, Polymer Degradation and Stability, 95:2175-2184.

37. H.P. Bhunia, G.B. Nando, T.K. Chaki, A. Basak, S. Lenka, P.L. Nayak. Synthesis and characterization of polymers from cashewnut shell liquid (CNSL), a renewable resource II. Synthesis of polyurethanes. 1999, European Polymer Journal, 35:1381-131.

38. H. Yeganeh, M. R. Mehdizadeh. Synthesis and properties of isocyanate curable millable polyurethane elastomers based on castor oil as a renewable resource polyol. 2004, European Polymer Journal, 40:1233-1238.

39. E. Hablot, D. Zheng, M. Bouquey, L. Avérous. Polyurethanes based on castor oil: kinetics, chemical, mechanical and thermal properties. 2008, Macromolecular Materials and Engineering, 293:922-929.

40. L. Hojabri, X. Kong, S. S. Narine. Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization and characterization. 2009, Biomacromolecules, 10:884-891.

41. C. Bueno-Ferrer, E. Hablot, M.C. Garrigós, S. Bocchini, L. Avérous, A. Jiménez. Relationship between morphology, properties and degradation parameters of novative biobased thermoplastic polyurethanes obtained from dimer fatty acids. 2012, Polymer Degradation and Stability, 97(10):1964-1969.

42. K. Bagdi, K. Molnar, B. Pukanszky Jr, B. Pukanszky. Thermal analysis of the structure of segmented polyurethane elastomers.2009, Journal of Thermal Analysis and Calorimetry, 98, 825-832.

43. Xu Y, Petrovic Z, Das S, Wilkes GL. Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments. 2008, Polymer, 49:4248-4258.

Войти или Создать
* Забыли пароль?