СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О БИОСИНТЕЗЕ БАКТЕРИАЛЬНЫХ ЭКЗОПОЛИСАХАРИДОВ
Аннотация и ключевые слова
Аннотация (русский):
Рассмотрены бактериальные экзополисахариды, строение, клеточный биосинтез, свойства.

Ключевые слова:
бактериальные экзополисахариды, биосинтез, bacterial exopolysaccharides biosynthesis
Список литературы

1. Канарский А.В., Дулькин Д.А., Семенов Э.И., Чеботарь В.К., Щербаков А.В., Канарская З.А. Вестник Казан. технол. унив. Т. 15. № 14. с. 186 - 190. (2012).

2. Хусаинов И.А., Канарский А.В., Канарская З.А. Вестник Казан. технол. унив. Т. 16. № 6 (1). с. 131 - 137. (2013).

3. Aguilera J.M., Lillford J.P, Food Materials Science, Principles and Practice. Springer. (2008).

4. Elizabeth A., Baldwin, R. Hagenmaier, Bai J. Edible coatings and films to improve food quality. 460 с. (2011).

5. Freitas F., Alves VD., Reis M.A. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol. 29(8):388-98. (2011).

6. Aaron D. Baldwin, K.L. Kiick. Polysaccharide-Modified Synthetic Polymeric Biomaterials. Biopolymers. 94 (1):128 - 140. (2010).

7. Rehm H.A. Bacterial polymers: biosynthesis, modifications and applications Bernd Nature Reviews Microbiology published online. (2010).

8. Flemming, H.C., Neu, T.R., Wozniak, D.J. The EPS matrix: The “house of biofilm cells”. J. Bacteriol. 189, 7945 - 7947. (2007).

9. Flemming H.C., Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 8. 623 - 633. (2010).

10. Decho A.W., Norman R.S., Visscher P.T. Quorum sensing in natural environments: Emerging views from microbial mats. Trends Microbiol. 18. 73 - 80. (2010).

11. Ian W. Sutherland. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology. 147. 3 - 9. (2001).

12. Kokare C.R., Chacroborty S., Khopade A.N., Mohadik K.R. Biofilm Importants and applications. Indian Journal of Biotechnology. Vol. 8. pp 159 - 168. (2009).

13. Czaczyk K., Myszka K. Biosynthesis of Extracellular Polymeric Substances (EPS) and Its Role in Microbial Biofilm Formation. Polish J. of Environ. Stud. Vol. 16. №. 6. 799 - 806. (2007).

14. Welman Alan D., Maddox Ian S. T Exopolysaccharides from lactic acid bacteria: perspectives and challenges rends in Biotechnology. Vol. 21. № 6. (2003).

15. Bart Degeest, Frederik Vaningelgem, Luc De Vuyst. Microbial physiology, fermentation kinetics, and process engineering of heteropolysaccharide production by lactic acid bacteria. International Dairy Journal 11 747-757. (2001).

16. Seema Patel, Avishek Majumder, Arun Goyal Potentials of Exopolysaccharides from Lactic Acid Bacteria. Indian J Microbiol. 52(1):3-12. (2012).

17. Vinderola G., Perdigon G., Duarte J., Farnworth E., Matar C. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine. 36 (5-6):254-60. (2006).

18. Liu CF., Tseng KC, Chiang SS, Lee BH, Hsu WH, Pan TM. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J Sci Food Agric.; 91(12):2284-91. (2011).

19. Maeda H., Zhu X, Omura K, Suzuki S, Kitamura S. Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors. 22(1-4):197-200. (2004).

20. Shimizu J, Wada M, Takita T, Innami S. Curdlan and gellan gum, bacterial gel-forming polysaccharides, exhibit different effects on lipid metabolism, cecal fermentation and fecal bile acid excretion in rats. 45 (3):251 - 62. (1999).

21. Sengul N, Aslim B, Ucar G. Effects of exopolysaccharide-producing probiotic strains on experimental colitis in rats. Dis Colon Rectum. 49(2): 250-8. (2006).

22. Russo P, Lopez P, Capozzi V, de Palencia PF, Duenas MT, Spano G, Fiocco D. Beta-glucans improve growth, viability and colonization of probiotic microorganisms.

23. Brink M, Todorov SD, Martin JH, Senekal M, Dics LM. The effect of prebiotics on production of antimicrobial compounds, resistance to growth at low pH and in the presence of bile, and adhesion of probiotic cells to intestinal mucus. J Appl Microbiol. 100 (4):813-20. (2006).

24. Sayem S.M., Manzo E., Ciavatta L., Tramice A., Cordone A., Zanfardino A., De Felice M., Varcamonti M. Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Fact. 27;10:74. (2011).

25. Roos N.M., Katan M.B. Effects of probiotic bacteria on diarrhoea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am J Clin Nutr. 71:405-411. (2000).

26. Sabina Górska, Paweł Grycko, Jacek Rybka, Andrzej Gamian Exopolysaccharides of lactic acid bacteria: structure and biosynthesis. (2013).

27. Rehm, B.H.A. Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Academic Press. 294 с. (2009)

28. Werning1 L., Notararigo1 S., Nбcher M., Fernбndez de Palencia1 P., Aznar R., Lуpez1 P. Biosynthesis, Purification and Biotechnological Use of Exopolysaccharides Produced by Lactic Acid Bacteria Marнa. www.intechopen.com

29. B. Pe´ ant, G. LaPointe,C. Gilbert, D. Atlan, P. Ward and D. Roy Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology. 151, рр. 1839 - 1851. (2005).

30. Ruffing A, Ruizhen Chen R Review Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microbial Cell Factories. 5:25. (2006).

31. Rodriguez-Diaz J, Yebra MJ. Enhanced UDP-glucose and UDP-galactose by homologous overexpression of UDP-glucose pyrophosphorylase in Lactobacillus casei. Biotechnol Prog. 22(2):369-74. (2006).

32. Mao Z., Shin H.D., Chen R.R. Engineering the E. coli UDP-glucose synthesis pathway for oligosaccharide synthesis.

33. Faber E.J. Modelling in aqueous solution of the exopolysaccharide produced by Lactobacillus helveticus 766. Biopolymers. 63. 66-76. (2002).

34. Funane K., Ishii T., Matsushita M., Hori K., Mizuno K., Takahara H., Kitamura Y., Kobayashi M. Water-soluble and water-insoluble glucans produced by Escherichia coli recombinant dextransucrases from Leuconostoc mesenteroides NRRL B-512F. Carbohydr Res. 3.334 (1):19-25. (2001).

35. Sacha A. F. T. van Hijum. Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria. Microbiology and Molecular Biology Reviews. Vol. 70. №. 1. p. 157-176. (2006).

36. Korakli M., Vogel R.F. Structure/function relationship of homopolysaccharide producing glycansucrasesand therapeutic potential of their synthesized glycans. Applied Microbiology and Biotechnology. Vol. 71. №.6. pp. 790 - 803. (2006).

37. Santos M., Teixeira J., Rodrigues A. Production of dextransucrase, dextran and fructose from sucrose using Leuconostoc mesenteroides NRRL B512 (f), Biochemical Engineering Journal. 4. 177-188. (2000).

38. Naessens M., Cerdobbel A., Soetaert W., Vandamme E. Review Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol. 80:845-860. (2005).

39. Quirasco M, Lopez-Munguia A, Remaud-Simeon M, Monsan P, Farres A. Induction and transcription studies of the dextransucrase gene in Leuconostoc mesenteroides NRRL B-512F. Appl Environ Microbiol. 65 (12):5504-9. (1999).

40. Naessens M., Cerdobbel A. Dextran dextrinase and dextran of Gluconobacter oxydans. Ind Microbiol Biotechnol. 32: 323-334. (2005).

Войти или Создать
* Забыли пароль?