Рассматриваются и обсуждаются возможности использования биополимеров, и в частности дезоксирибонуклеиновой кислоты (ДНК). На нескольких примерах дается описание способов их функционализации фоточувствительными молекулами для получения желаемых свойств, а также при переработке материалов в тонкие пленки. Спектроскопическими методами изучена стабильность при комнатных условиях, фототермическая стабильность, а также пороги оптических разрушений. Также рассматриваются и обсуждаются физические свойства, и, в частности, линейные, нелинейные и фотолюминесцентные свойства полученных материалов.
Deoxyribonucleic acid, DNA, collagen, DNA-CTMA complex, linear optical properties, nonlinear optical properties, photoluminescence, photo-thermal stability, optical damage threshold, thin films, дезоксирибонуклеиновая кислота, ДНК, коллаген, комплекс ДНК-CTMA, линейные оптические свойства, нелинейные оптические свойства, фотолюминесценция, фототермическая стабильность, порог оптического разрушения, тонкие пленки
1. http://www.brighthub.com/environment/green living/articles/107380.aspx.
2. J. P. Vigneron, J.F. Colomer, N. Vigneron, V. Lousse, Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera, ) Phys. Rev. E, 72 (2005), 061904-061906.
3. D. E. Azofeifa, H. J. Arguedas, W. E. Vargas, Optical properties of chitin and chitosan biopolymers with application to structural color analysis, Opt. Mat.,35(2), , 175-183(2012); DOI: http://dx.doi.org/10.1016/j.optmat.2012.07.024.
4. J. D. Watson and F. H. C. Crick, Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid, Nature, 171, 737-738(1953).
5. F. H. C. Crick and J. D.Watson, The complementary structure of deoxyribonucleic acid. Proc. Royal Soc. (London), 223, 80-96(1954).
6. L A. Pray, Ph.D. Discovery of DNA structure and function: Watson and Crick, Nature Education, Nature Education, 1(1) (2008).
7. G. S. Manning, The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides, Q. Rev. Biophys., 11(2), 179 - 246(1978).
8. M. Mandelkern, J. Elias, D. Eden, D. Crothers The dimensions of DNA in solution. J Mol Biol., 152 (1), 153-61(1981)., doihttps://doi.org/10.1016/0022-2836(81)90099-1.
9. H. Clausen-Schaumann, M. Rief, C. Tolksdorf, H. Gaub, Mechanical stability of single DNA molecules. Biophys J, 78 (4): 1997-2007(2000), doihttps://doi.org/10.1016/S0006-3495(00)76747-6.
11. http://fr.wikipedia.org/wiki/Collag%C3%A8ne.
12. L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactantcomplexes: large-scale preparation and optical and thermal properties, Chem. Mater.
13. (4), pp. 1273-1281, 2001. 13. J. Grote, Biopolymer materials show promise for electronics and photonics applications, SPIE newsroom, DOIhttps://doi.org/10.1117/2.1200805.1082(2008).
14. M. H. Uriarte-Montoyaa, J. L. Arias-Moscosoa, M. Plascencia-Jatomea, H. Santacruz-Ortega, O. Rouzaud-Sández, J. L. Cardenas-Lopez, E. Marquez-Rios, J. M. Ezquerra-Brauer, Jumbo squid (Dosidicus gigas) mantle collagen: Extraction, characterization, and potential application in the preparation of chitosan-collagen biofilms, Bioresource Technology, 101 4212-4219(2010).
15. L. Wang, Q. Liang, Z. Wang, J. Xu, Y. Liu, H. Ma, Preparation and characterisation of type I and V collagens from the skin of Amur sturgeon (Acipenser schrenckii), Food Chemistry, 148, 410-414(2014).
16. V. Trandafir, G. Popescu, M. G. Albu, H. Iovu, M. Georgescu, Bioproduse pe baza de colagen, Editura Ars Docendi, Bucuresti, 2007, ISBN: 978-973-558-291-3.
17. M. G. Albu, Collagen gels and matrices for biomedical applications, Lambert Academic Publishing, Saarbrücken. 2011. ISBN 978-3-8443-3057-1.
18. D. L. Vizard, R. White A and A. T. Ansevin, Comparison of theory to experiment for DNA thermal denaturation, Nature, 275, 250-251(1978).
19. J. SantaLucia, Jr., A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA, 95(4), 1460-1465(1998). doihttps://doi.org/10.1073/pnas.95.4.1460. PMID 9465037.
20. R. A. Hayes, B. J. Feenstra, Video-speed electronic paper based on electrowetting. Nature, 425, 6956, 383-385(2003).
21. M. Nogi and H. Yano, Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry. Adv. Mat., 20, 1849-1852(2008).
22. M. C. J. Large, D. T. Croke, W. J. Blau, P. McWilliam, F., Kajzar, EFISH in electrolyte and polyelectrolyte systems, Mol. Cryst. Liq. Cryst,. Sc. & Technol., Section B: Nonl. Opt.,12(3), 225-238 (1995).
23. M. C. J. Large, D. T. Croke, W. J. Blau, P. McWilliam, F. Kajzar, Molecular Length Dependent Type Polarizability, in Nonlinear Optical Properties of Organic Molecules IX,G. Mohlmann Ed., Proc. SPIE, vol. 2852,36 (1996).
24. K. Ijiro, Y. Okahata, A DNA-lipid complex soluble in organic solvents, J. Chem. Soc., Chem. Commun, 18, 1339-1341 (1992).
25. Y. Hoshino, H. Nakayama, Y. J. Okahata, Preparations of a RNA-lipid complex filmand its physical properties, Nucleic Acids Res. Suppl. No. 1, 61-62 (2001).
26. K. Tanaka, Y. J. Okahata, A DNA−Lipid Complex in Organic Media and Formation of an Aligned Cast Film, J. Am. Chem. Soc., 118(44), 10679-10683 (1996).
27. V. G. Sergeyev, O. A. Pyshkina, A. V.Lezov, A. B. Mel’nikov, E. I. Ryumtsev, A. B. Zezin. V. A. Kabanov, DNA Complexed with Oppositely Charged Amphiphile in Low-Polar Organic Solvents, Langmuir, 15, 4434-4440 (1999).
28. H. Kimura, S. Machida, K. Hone, Y. Okahata, Effect of Lipid Molecules on Twisting Motions of DNA Helix Studied by Fluorescence Polarization Anisotropy, Polymer J., 30, 708-712 (1998).
29. A. Watanuki, J. Yoshida, S. Kobayashi, H. Ikeda, N. Ogata, Optical and photochromic properties of spiropyran-doped marine-biopolymer DNA-surfactant complex films. Proc.SPIE, 5724, 234-241 (2005).
30. Y. Kawabe, L. Wang, T. Koyama, S. Horinouchi, N. Ogata, Light amplification in dye doped DNA-surfactant complex films, Proc. SPIE, 4106, 369-376 (2000).
31. L. Wang, G. Zhang, S. Horinouchi, J. Yoshida, N. Ogata, Optoelectronic materials derived from salmon deoxyribonucleic acid, Nonl. Opt., 24, 63-68 (2000).
32. Y. Kawabe, L. Wang, S. Horinouchi, N. Ogata, Amplified spontaneous emission from fluorescent dye-doped DNA-surfactant films, Adv. Mater. 12, 1281-1283 (2000).
33. T. Koyama, Y. Kawabe, N. Ogata, Electroluminescence as a probe for electrical and optical properties of deoxyribonucleic acid, Proc. SPIE, 4464, 248-255 (2002).
34. L. Wang, M. Fukushima, J. Yoshida, N. Ogata, A novel photochromic film materials derived from supramolecules, DNA-surfactant complex: Spiropyran-DNA-CTMA complex, Nanotechnology toward theorganic photonics, GooTech Ltd., Chitose-shi, Japan, 379-384 (2002).
35. J. Yoshida, L. Wang, S. Kobayashi, G. Zhang, H. Ikeda, N. Ogata, Optical properties of photochromic-compound-doped marine-biopolymer DNA-surfactant complex films for switching applications, Proc. SPIE, 5351, 260 (2004).
36. L. Wang K. Ishihara, H. Izumi, M. Wada, G. Zhang, T. Ishikawa, A. Watanabe, S. Horinouchi, N. Ogata, Strongly luminescent rare-earth ion-doped DNA-CTMA complex film and fiber materials, Proc. SPIE, 4905, 143-152 (2002).
37. A. Watanuki, J. Yoshida, S. Kobayashi, H. Ikeda, N. Ogata, Optical and photochromic properties of spiropyran-doped marine-biopolymer DNA-surfactant complex films. Proc.SPIE, 5724, 234-241 (2005).
38. Y. Kawabe, L. Wang, T. Koyama, S. Horinouchi, N. Ogata, Light amplification in dye doped DNA-surfactant complex films, Proc. SPIE, 4106, 369-376 (2000).
39. L. Wang, G. Zhang, S. Horinouchi, J. Yoshida, N. Ogata, Optoelectronic materials derived from salmon deoxyribonucleic acid, Nonl. Opt., 24, 63-68 (2000).
40. T. Koyama, Y. Kawabe, N. Ogata, Electroluminescence as a probe for electrical and optical properties of deoxyribonucleic acid, Proc. SPIE, 4464, 248-255 (2002).
41. J. Yoshida, L. Wang, S. Kobayashi, G. Zhang, H. Ikeda, N. Ogata, Optical properties of photochromic-compound-doped marine-biopolymer DNA-surfactant complex films for switching applications, Proc. SPIE, 5351, 260 (2004).
42. L. Wang, J. Yoshida, N. Ogata, S. Sasaki, T. Kamiyama, Self-Assembled Supramolecular Films Derived from Marine Deoxyribonucleic Acid (DNA)-Cationic Surfactant Complexes: Large-Scale Preparation and Optical and Thermal Properties, Chem. Mat., 13(4), 1273-1281(2001).
43. E. Bajer, Modyfikacja DNA dla zastosowań w optyce nieliniowej (Modification of DNA for application in nonlinear optics), Master thesis, Cracow University of Technology, Poland, 2010.
44. Y - C. Hung, W. T.-Y. Lin Hsu, Y.-W. Chiu, Y. - S. Wang and L Fruk, Functional DNA biopolymers and nanocomposite for optoelectronic applications, Opt. Mat., 34, 1208-1213(2012).
45. J, Niziol, M. Sniechowski,E. Hebda, M. Jancia, J. Pielichowski, Properties of DNA complexes with new cationic surfactants, Chem. Chem. Technol., 5(4), 397-402(2011).
46. G. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, J. G. Grote, Photochromic dye semi-intercalation into DNA-based polymeric matrix: Computer modelling and experiment, Chem. Phys. Lett. 484, 321-323(2010).
47. G. Pawlik, W. Radosz, A. C. Mitus, J. Myśliwiec, A. Miniewicz, F. Kajzar, I. Rau, Grating inscription in DR1:DNA-CTMA thin films: theory and experiment, Proc. SPIE, 8817, 8170D-1-6 (2013).
48. G. Pawlik, W. Radosz, A. C. Mitus, J. Myśliwiec, A. Miniewicz, F. Kajzar, I. Rau, J. G. Grote, Kinetics of grating inscription in DR1:DNA-CTMA thin film: experiment and semi-intercalation approach, Proc. SPIE, 8464, 846404(2012).
50. E. E. Havinga and P. Van Pelt, Electrochromism of organic dyes in polymer matrices, in Electrochromism of organic dyes in polymer matrices, B. R. Jennings (Ed.), Plenum Press, New York 1979, pp. 89 - 97.
51. I. Rau, R. Czaplicki, B. Derkowska, J. G. Grote, F. Kajzar, O. Krupka and B. Sahraoui, Nonlinear Optical Properties of Functionalized DNA-CTMA Complexes, Nonl. Opt. Quant. Opt., 42, 283-324(2011).
52. B. Derkowska, M. Wojdyla, W. Bala, K. Jaworowicz, M. Karpierz, J.G. Grote, O. Krupka, F. Kajzar and B. Sahraoui, Influence of different peripheral substituents on the nonlinear optical properties of cobalt phthalocyanine core, J. Appl. Phys., 101, (8), 083112(1-8), (2007)
53. http://en.wikipedia.org/wiki/File:Structure_of_Hoechst_dyes.svg.
54. I. Bouamaied, L.-A. Fendt, D. Hussinger, M. Wiesner, S. Thöni, N. Amiot, E. Stulz, Nucleosides Nucleotides, Nucleic Acids, 26, 1533 -1538(2007).
55. A. Onoda, M. Igarashi, S. Naganawa, K. Sasaki, S. Ariyasu, T. Yamamura, Bull. Chem. Soc. Jpn., 82, 1280 - 1286(2009).
56. K. Berlin, R. K. Jain, M. D. Simon, C. Richert, A porphyrin embedded in DNA, J. Org. Chem., 63,1527 -1535(1998).
57. W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, L. Schmidt-Mende, M. K. Nazeeruddin, Q. Wang, M. Gratzel, D. L. Officer, Highly efficient porphyrin sensitizers for dye-sensitized solar cells, J. Phys. Chem. C, 111, 11760 -11762(2007).
58. W. M. Campbell, A. K. Burrell, D. L. Officer, K. W. Jolley, Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell, Coord. Chem. Rev., 248, 1363 -1379(2004).
59. L. M. Moreira, F. V. dos Santos, J. P. Lyon, M. Maftoum-Costa, C. Pacheco-Soares, N. S. da Silva, Photodynamic therapy: porphyrins and phthalocyanines as photosensitizers,Aust. J. Chem., 61, 741 -754(2008).
60. A. W. I. Stephenson, N. Bomholt, A. C. Partridge, V. V. Filichev, Significantly Enhanced DNA Thermal Stability Resulting from Porphyrin H-Aggregate Formation in the Minor Groove of the Duplex, Chem. Bio. Chem., 11, 1833 - 1839(2010); DOI:https://doi.org/10.1002/cbic.201000326.
61. A. W. I. Stephenson, A. C. Partridge, V. V. Filichev, Synthesis of b-Pyrrolic-Modified Porphyrins and Their Incorporation into DNA, Chem. Eur. J., 17, 6227 - 6238(2011); DOI:https://doi.org/10.1002/chem.201003200.
62. A. Samoc, M. Samoc, J. G. Grote, A. Miniewicz and B. Luther-Davies, Optical properties of deoxyribonucleic acid (DNA) polymer host, Proc. SPIE, 6401, 6401-1-6 (2006).
63. I. Iosub, F. Kajzar, M. Makowska-Janusik, A. Meghea, A. Tane A. and I. Rau, Electronic structure and optical properties of some anthocyanins extracted from grapes, Opt. Mat., 34(10),1644 1650(2012).
64. H. Mojzisova, J. Olesiak, M. Zielinski, K. Matczyszyn, D. Chauvat and J. Zyss J., Polarization-Sensitive Two-Photon Microscopy Study of the Organization of Liquid- Crystalline DNA, Biophys. J. 97, 2348-2357 (2009).
65. N. Ogata and K. Yamaoka, DNA-lipid hybrid films derived from chiral lipids, Polymer J., 40(3), 186-191(2008).