Аннотация и ключевые слова
Аннотация (русский):
Рассматриваются и обсуждаются возможности использования биополимеров, и в частности дезоксирибонуклеиновой кислоты (ДНК). На нескольких примерах дается описание способов их функционализации фоточувствительными молекулами для получения желаемых свойств, а также при переработке материалов в тонкие пленки. Спектроскопическими методами изучена стабильность при комнатных условиях, фототермическая стабильность, а также пороги оптических разрушений. Также рассматриваются и обсуждаются физические свойства, и, в частности, линейные, нелинейные и фотолюминесцентные свойства полученных материалов.

Ключевые слова:
Deoxyribonucleic acid, DNA, collagen, DNA-CTMA complex, linear optical properties, nonlinear optical properties, photoluminescence, photo-thermal stability, optical damage threshold, thin films, дезоксирибонуклеиновая кислота, ДНК, коллаген, комплекс ДНК-CTMA, линейные оптические свойства, нелинейные оптические свойства, фотолюминесценция, фототермическая стабильность, порог оптического разрушения, тонкие пленки
Список литературы

1. http://www.brighthub.com/environment/green living/articles/107380.aspx.

2. J. P. Vigneron, J.F. Colomer, N. Vigneron, V. Lousse, Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera, ) Phys. Rev. E, 72 (2005), 061904-061906.

3. D. E. Azofeifa, H. J. Arguedas, W. E. Vargas, Optical properties of chitin and chitosan biopolymers with application to structural color analysis, Opt. Mat.,35(2), , 175-183(2012); DOI: http://dx.doi.org/10.1016/j.optmat.2012.07.024.

4. L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactantcomplexes: large-scale preparation and optical and thermal properties, Chem. Mater.13 (4), pp. 1273-1281, 2001.

5. J. Grote, Biopolymer materials show promise for electronics and photonics applications, SPIE newsroom, DOIhttps://doi.org/10.1117/2.1200805.1082(2008).

6. M. H. Uriarte-Montoyaa, J. L. Arias-Moscosoa, M. Plascencia-Jatomea, H. Santacruz-Ortega, O. Rouzaud-Sández, J. L. Cardenas-Lopez, E. Marquez-Rios, J. M. Ezquerra-Brauer, Jumbo squid (Dosidicus gigas) mantle collagen: Extraction, characterization, and potential application in the preparation of chitosan-collagen biofilms, Bioresource Technology, 101 4212-4219(2010).

7. L. Wang, Q. Liang, Z. Wang, J. Xu, Y. Liu, H. Ma, Preparation and characterisation of type I and V collagens from the skin of Amur sturgeon (Acipenser schrenckii), Food Chemistry, 148, 410-414(2014).

8. V. Trandafir, G. Popescu, M. G. Albu, H. Iovu, M. Georgescu, Bioproduse pe baza de colagen, Editura Ars Docendi, Bucuresti, 2007, ISBN: 978-973-558-291-3.

9. M. G. Albu, Collagen gels and matrices for biomedical applications, Lambert Academic Publishing, Saarbrücken. 2011. ISBN 978-3-8443-3057-1.

10. D. L. Vizard, R. White A and A. T. Ansevin, Comparison of theory to experiment for DNA thermal denaturation, Nature, 275, 250-251(1978).

11. J. SantaLucia, Jr., A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA, 95(4), 1460-1465(1998). doihttps://doi.org/10.1073/pnas.95.4.1460. PMID 9465037.

12. M. Moldoveanu, R. Popescu, C. Pîrvu, J. G. Grote, F. Kajzar, I. Rau I., On the stability and degradation of dna based thin films, Mol. Cryst. Liq. Cryst., 522, 182 - 190(2010).

13. R. Popescu, C. Pirvu, M. Moldoveanu, J. G. Grote, F. Kajzar, I. Rau I., Biopolymer Thin Films for Optoelectronics Applications, Mol. Cryst. Liq. Cryst., 522, 229-237(2010).

14. D. Rezzonico, Kwon Seong-Ji, H. Figi, O-Pil Kwon, M. Jazbinsek, P. Günter, Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials, J. Chem. Phys. 128, 124713-(2008); http://dx.doi.org/10.1063/1.2890964.

15. A. Dubois, M. Canva, A. Brun, F. Brun, F. Chaput, J. P. Boilot, Photostability of dye molecules trapped in solid matrices, Appl. Opt. 35, 3193(1996).

16. A. Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva, K.-P. Chan, K. Park, L. Sukhomlinova, R. J. Twieg, Photostability enhancement of an azobenzene photonic polymer, Appl. Phys. Lett. 77, 2083-2086(2000); http://dx.doi.org/10.1063/1.1313809.

17. M. E. DeRosa, M. Q. He, J. S. Cites, S. M. Garner, Y. R. Tang, Photostability of High μβ Electro-Optic Chromophores at 1550 nm, J. Phys. Chem. B, 108, 8725-8730(2004).

18. I. Rau and F. Kajzar, Multiphoton processes in organic materials and their application, Edition des Archives Contemporaines & Old City Publishing, Paris & Philadelphia, 2012.

19. R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, C. G. Willson, Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films, J. Opt. Soc. Am. B, 7(7), 1239-1250(1990).

20. E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J., Pielichowski, I., Rau I. and A. Tane, Optical Properties of Thin Films of DNA-CTMA and DNA-CTMA Doped with Nile Blue, Mol. Cryst. Liq. Cryst., 556(1), 309-316(2012), DOI:https://doi.org/10.1080/15421406.2012.642734.

21. J. G. Grote, N. Ogata, D. E. Diggs and F. K. Hopkins, Deoxyribonucleic acid (DNA) cladding layers for nonlinear-optic-polymer-based electro-optic devices, Proc. SPIE, 4991, 621 (2003).

22. J. Grote, D. Diggs, R. Nelson, J. Zetts, F. Hopkins, N. Ogata, J. Hagen, E. Heckman, P. Yaney, M. Stone and L. Dalton, DNA photonics [deoxyribonucleic acid], Mol. Cryst. Liq. Cryst., 3426(2005).

23. L. S. Vasilenko, V. P. Chebotaev, Y. V. Troitski, Visual observation of infrared laser emission, Soviet Physics JETP, 21(3), 513 (1965).

24. S. Fine, W. P. Hansen, Optical second harmonic generation in biological systems, Appl. Opt., 10(10), 2350-2353 (1971).

25. B. M. Kim, J. Eichler, L. B. Da Silva, Frequency doubling of ultrashort laser pulses in biological tissues, Appl. Opt., 38(34), 7145-7150 (1999).

26. Y. C. Guo, P. P. Ho,, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, R. R. Alfano, Second-harmonic tomography of tissues. Opt. Lett., 22(17), 1323-1325 (1997).

27. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, W. A. Mohler , Three-dimensional high-resolution second-harmonic generation imaging of endogenouss structural proteins in biological tissues. Biophys. J., 82(1), 493-508 (2002).

28. G. Cox, N. Moreno, J. Feijo, Second-harmonic imaging of plant polysaccharides,J Biomed. Opt, 10(2), 024013 (2005).

29. S. W. Chu, I. H. Chen, T. M. Liu, P. C. Chen, C. K. Sun, B. L. Lin, Multimodal nonlinear spectral microscopy based on a femtosecond cr:forsterite laser. Opt Lett, 26(23),1909-11 (2001).

30. G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, S. Ushioda, Detection of starch granules in a living plant by optical second harmonic microscopy, Journal of Luminescence, 87(9), 824-826 (2000).

31. S. W. Chu, I. H. Chen, T. M. Liu, C. K. Sun, S. P. Lee, B. L. Lin, P. C. Kuo, M. X. Cheng, D. J. Lin, H. L. Liu, Nonlinear bio-photonic crystal effects revealed with multimodal nonlinear microscopy. J. Microsc.-Oxford, 208, 190-200 (2002).

32. R. M. Brown, Jr, A. C. Millard, P. J. Campagnola, Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy. Opt Lett, 28(22),2207-2209 (2003).

33. O. Nadiarnykh, R. B. Lacomb, P. J. Campagnola, W. A. Mohler, Coherent and incoherent second harmonic generation in fibrillar cellulose matrices. Opt Express, 15(6), 3348-3360 (2007).

34. Y. Marubashi, T. Higashi, S. Hirakawa, S. Tani, T. Erata, M. Takai, J. Kawamata, Second harmonic generation measurements for biomacromolecules: Celluloses, Opt. Rev., 11(6), 385-387 (2004).

35. A. Knoesen, Second order optical nonlinearity in single and triple helical protein supramolecular assemblies, Nonl. Opt. Quant. Opt.: Concepts in Modern Optics, 38(3-4), 213-225 (2009).

36. H. Lee, M. J. Huttunen, K.-J. Hsu, M. Partanen, G.-Y. Zhuo, M. Kauranen, andS.-W. Chu, Chiral imaging of collagen by second-harmonic generation circular dichroism, Biomed Opt Express. 4(6), 909-916(2013).; doi:https://doi.org/10.1364/BOE.4.000909.

37. V. Ostroverkhov, O. Ostroverkhova, R.G. Petschek, K.D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L.C. Chien, Optimization of the Molecular Hyperpolarizability for Second Harmonic Generation in Chiral Media, Chem. Phys. 257, 263-274 (2000).

38. S. Sioncke, T. Verbiest and A. Persoons, Second-order nonlinear optical properties of chiral materials, Mat. Sc. Engin., R 42, 115-155 (2003).

39. M. Iwamoto, F. Liu, O.-Y. Zhong-canc, Polarization-dependence of optical second harmonic generation for chiral cylindrical structure and explanation for nonlinear optical imaging of cholesteric liquid crystals, Chem. Phys. Lett., 511, 455-460(2011); doi.org/10.1016/j.cplett.2011.06.056

40. Y. R. Shen, The principles of nonlinear optics; New York: Wiley, 2003.

41. F. C. Boman,J. M. Gibbs-Davis, L. M. Heckman, B. R. Stepp, S. T. Nguyen, F. M. Geiger, DNA at Aqueous/Solid Interfaces: Chirality-Based Detection via Second Harmonic Generation Activity, J. Am. Chem. Soc., 844-848(2009).

42. Zhuang Zheng-Fei, Liu Han-Ping, Guo Zhou-Yi, Zhuo Shuang-Mu, Yu Bi-Ying, Deng Xiao-Yuan, Second-harmonic generation as a DNA malignancy indicator of prostate glandular epithelial cells, Chinese Phys. B, 19(5), 4950 (2010).

43. W. Williamson, Y. Wang, S., S. A. Lee, H. J. Simon, A. Rupprecht, Observation of optical second harmonic generation in wet-spun films of Na-DNA, Spectrosc. Lett., 26(5),849-858 (1993).

44. Y. Satoru, N. Masayoshi, Kishi Ryohei, Nakagawa Nozomi, Nitta Tomoshige and Yamaguchi Kizashi, Theoretical study on nonlinear optical (NLO) properties of modified guanine bases having a NLO group, Nippon Kagakkai Koen Yokoshu, 85(1),302 (2005).

45. A. - M. Manea, I. Rau, A. Tane, F. Kajzar, L. Sznitko and A. Miniewicz, Poling kinetics and second order NLO properties of DCNP doped PMMA based thin film, Opt. Mat., 36 (1), 69-74: http://dx.doi.org/10.1016/j.optmat.2013.05.012

46. F. KAjzar, A. Jen and K. S. Lee Polymeric Materials and Their Orientation Techniques for Second-Order Nonlinear Optics, in Polymers for Photonics Applications II: Nonlinear Optical, Photorefractive and Two-Photon Absorption Polymers, K. S. Lee and G. Wegner Eds, Springer Verlag,. Advances in Polymer Sc, vol. 161, 1-85(2003).

47. P-A. Chollet, F. Kajzar, J. Messier, Electric Field Induced Optical Second Harmonic Generation and Polarization Effects in Polydiacetylene Langmuir-Blodgett Multilayers, Thin Sol. Films, 132, 1(1985).

48. R. Grykien, B. Luszczynska, I. Glowacki, J. Ulanski, F. Kajzar, R. Zgarian, I. Rau, A significant improvement of luminence vs current density efficiency of a BioLED, Opt. Mat., 36(6), 1027-1033(2014); DOI:https://doi.org/10.1016/j.optmat.2014.01.018Opt. Mat. (2014).

49. D. Porschke in Molecular electro-optic properties of Macromolecules and colloids in solution, S. Krause Ed., Plenum Press, New York 1981.

50. K. Yamaoka, K. Fukudome, Electric field orientation of nucleic acids in aqueous solutions. J. Phys. Chem., 92, 4994-5001 (1988).

51. K. Yamaoka, K. Fukudome, Electric field orientation of nucleic acids in aqueous solutions. 2. Dependence of the intrinsic electric dichroism and electric dipole moments of rodlike DNA on molecular weight and ionic strength, J. Phys. Chem., 92, 6896-6903(1990); DOI:https://doi.org/10.1021/j100380a066

52. K. Yamaoka, K.Fukudome, K. Matsuda, Electric field orientation of nucleic acids in aqueous solutions. 3. Non-Kerr-law behavior of high molecular weight DNA at weak fields as revealed by electric birefringence and electric dichroism, J. Phys. Chem., 92, 7131 -7136(1992; DOI:https://doi.org/10.1021/j100196a055).

53. C. T. O’Konski, N. C. Stellwagen, structural transition produced by electric fields in aqueous sodium deoxyribonucleate, Biophys. J., 5, 607-613 (1965).

54. E. Neumann, E. Werner, A. Spratke, K. Kruger, in Colloid and Molecular Electro-Optics, B. R. Jennings and S. P. Stoyov Eds, Institute of Physics Publ., Bristol 1993.

55. M. Samoc, A. Samoc; J. G. Grote, Complex nonlinear refractive index of DNA, Chem. Phys. Lett., 431(1-3), 132-134 (2006).

56. F. Kajzar, Third Harmonic Generation, in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, M. G. Kuzyk, C. W. Dirk Eds, Marcel Dekker, Inc., New York, 1998, pp. 767-839.

57. I. Rau, F. Kajzar, J. Luc, B. Sahraoui and G. Boudebs, Comparison of Z-scan and THG derived nonlinear index of refraction in selected organic solvents, J. Opt. Soc. Am. B, 25, No. 10, 1738-47 (2008).

58. U. Gubler, C, Bosshard Optical third-harmonic generation of fused silica in gas atmosphere: Absolute value chi(3), Phys Rev. B, 61, 10702(2000).

59. D. Morichere, M. Dumont, Y. Levy, G. Gadret, F. Kajzar Nonlinear properties of poled polymer films: SHG and electrooptic measurements, Proc. SPIE, 1560, 214 ((1991).

60. J. Grote, D. Diggs, R. Nelson, J. Zetts, F. Hopkins, N. Ogata, J. Hagen, E. Heckman, P. Yaney, M. Stone and L. Dalton, DNA photonics [deoxyribonucleic acid], Mol. Cryst. Liq. Cryst., 3426(2005).

61. F. Kajzar, J. Messier, C. Rosilio, Nonlinear Optical Properties of Thin Films of Polysilane, J. Appl. Phys., 60, 3040-3044(1986).

62. I. Rau., J. G. Grote,. F. Kajzar., A. Pawlicka., DNA - novel nanomaterial for applications in photonics and in electronics,. Comptes Rendus Physique, 13, 853-864(2012).

63. M. Samoc, A. Samoc and J. G. Grote, Complex nonlinear refractive index of DNA, Chem. Phys. Lett., 431(1-3), 132-134 (2006).

64. B. Derkowska, M. Wojdyla, W. Bala, K. Jaworowicz, M. Karpierz, J.G. Grote, O. Krupka, F. Kajzar and B. Sahraoui, Influence of different peripheral substituents on the nonlinear optical properties of cobalt phthalocyanine core, J. Appl. Phys., 101, (8), 083112(1-8), (2007)

65. J. Mysliwiec, A. Miniewicz, I. Rau, O. Krupka, B. Sahraoui, F. Kajzar, J. Grote, Biopolymer-based material for optical phase conjugation, J. Optoel. Adv. Mat., 10(8), 2146 - 2150 (2008).

66. A. Rodríguez, G. Vitrant, P. A. Chollet, F. Kajzar, Optical control of an integrated interferometer using a photochromic polymer, Appl. Phys. Lett., 79, 461-3(2001).

67. J. Myśliwiec, M. Ziemienczuk and A. Miniewicz, Pulsed laser induced birefringence switching in a biopolymer matrix containing azo-dye molecules, Opt. Mat. 33 1382-1386(2011).

68. L.Wang, K. Ishihara, H. Izumi, M. Wada, G. Zhang, T. Ishikawa, A. Watanabe, S. Horinouchi, N. Ogata, Strongly luminescent rare-earth ion-doped DNA-CTMA complex film and fiber materials, Proc. SPIE, vol. 4905, 143 - 152 (2002).

69. Z. Yu, J. Hagen, Y. Zhou, D. Klotzkin, J. Grote, and A. Steckl, Photoluminescence and stimulated emission from deoxyribonucleic acid thin films doped with sulforhodamine, Appl. Opt. 46 (9), pp. 1507-1513, 2006.

70. Z. Yu, Y. Zhou, D. Klotzkin, J. Grote, and A. Steckl, Stimulated emission of sulforhodamine 640 doped DNA distributed feedback (DFB) laser devices, Proc. SPIE 6470, 64700V, 2007.

71. J. Massin, S. Parola, C. Andraud, F. Kajzar , I. Rau, Enhanced fluorescence of isophorone derivatives in DNA based materials, Opt. Mater. (2013), accessible online: http://dx.doi.org/10.1016/j.optmat.2013.04.021.

72. T. Koyama, Y. Kawabe, and N. Ogata, Electroluminescence as a probe for electrical and optical properties of deoxyribonucleic acid, Proc. SPIE, 4464, 248-255(2002).

73. A.-M. Manea, I. Rau, F. Kajzar, A. Meghea, Fluorescence, spectroscopic and NLO properties of green tea extract in deoxyribonucleic acid, Opt. Mat., 36 (1) 140-145(2013); http://dx.doi.org/10.1016/j.optmat.2013.04.016.

74. A.-M. Manea, I. Rau, F. Kajzar and A. Meghea, Preparation, Linear and NLO properties of DNA-CTMA-SBE complexes, Proceed. SPIE, vol. 8901, (2013).

75. K. Nakamura, T. Ishikawa, D. Nishioka, T. Ushikubo and N. Kobayashi, Color-tunable multilayer organic light emitting diode composed of DNA complex and tris 8-hydroxyquinolinato aluminium, Appl. Phys. Lett., 97, 193301(2010).

76. N. Kobayashi, Bioled with dna/conducting polymer complex as active layer, Nonl. Opt. Quant. Opt., 43, 233-251(2011).

77. R. Grykien, B. Luszczynska, I. Glowacki, J. Ulanski, F. Kajzar, R. Zgarian, I. Rau, A significant improvement of luminence vs current density efficiency of a BioLED, Opt. Mat., 36(6), 1027-1033(2014); DOI:https://doi.org/10.1016/j.optmat.2014.01.018Opt. Mat. (2014).

78. E. Bajer, Modyfikacja DNA dla zastosowań w optyce nieliniowej (Modification of DNA for application in nonlinear optics), Master thesis, Cracow University of Technology, Poland, 2010.

79. J. A.Hagen, W. Li, A. J. Steckl, J. G. Grote, Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer, Appl. Phys. Lett., 88, 171109(2006).

80. J. G. Grote, E. M. Heckman, J. A. Hagen, P. P. Yaney, G. Diggs, G., Subramanyam, R. L. Nelson, J. S. Zetts, D. Y. Zang, B. Singh, N. S. Sariciftci and F. K. Hopkins, DNA: new class of polymer, in Organic Photonic Materials and Devices VIII, Proc. SPIE, 6117, 61170J-6 (2006).

81. A. J. Steckl, DNA - a new material for photonics?, Nature Photonics ,1, 3 - 5(2007).

82. Y. Kawabe, L. Wang, T. Koyama, S. Horinouchi and N. Ogata, Light amplification in dye doped DNA-surfactant complex films, Proc. SPIE, 4106, 369 - 376(2000).

83. Y. Kawabe, L. Wang, S. Horinouchi, N. Ogata, Amplified spontaneous emission from fluorescent dye-doped DNA-surfactant films, Adv. Mater. 12, 1281 - 1283 (2000).

84. J. Myśliwiec, L. Sznitko, A. M. Sobolewska, S. Bartkiewicz and A. Miniewicz, Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system, Appl. Phys. Lett., 96, 141106-1-3 (2010).

85. J. Mysliwiec, L. Sznitko, A. Miniewicz, F. Kajzar and B. Sahraoui B., Study of the amplified spontaneous emission in a dye-doped biopolymer-based material, J. Phys. D: Appl. Phys., 42(8), 085101(2009).

86. M. Leonetti, R. Sapienza, M. Ibisate, C. Conti and C. Lopez, Optical gain in DNA-DCM, for lasing in photonic materials, Opt. Lett., 34(24), 3764-3766(2009), doihttps://doi.org/10.1364/OL.34.003764.

87. L. Sznitko, J. Myśliwiec, P. Karpiński, K. Palewska, K. Parafiniuk, S. Bartkiewicz, I. Rau, F. Kajzar, A. Miniewicz., Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing, Appl. Phys. Lett., 99(3), 031107_1-3(2011).

88. Y. Kawabe and K.-I. Sakai, DNA Based Solid-State Dye Lasers, Nonl. Opt. Quant. Opt., 43, 273-282(2011).

89. J. Mysliwiec, L. Sznitko, S. Bartkiewicz, A. Miniewicz, Z. Essaidi, F. Kajzar and B. Sahraoui, Amplified spontaneous emission in the spiropyran-biopolymer based system, Appl. Phys. Lett. 94, 241106 _1-3(2009).

90. G. S. He, Q. Zheng, P. N. Prasad, J. G. Grote,F. K. Hopkins. Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex. Opt. Lett., 31, 359-361(2006).

91. L. Sznitko, A. Szukalski, K. Cyprych, P. Karpiński, A. Miniewicz, J. Myśliwiec, Surface roughness induced random lasing in bio-polymeric dye doped film, Chem. Phys. Lett. (579), 31-34 (2013).

92. L. Sznitko, K. Cyprych, A. Szukalski, A. Miniewicz, I. Rau, F. Kajzar, J. Myśliwiec,Lasing and random lasing based on organic molecules, Proc. SPIE, Vol. 8901, p. 89010Y-1-9 2013.

93. J. Mysliwiec; L. Sznitko, K. Cyprych, A. Szukalski, ;A. Miniewicz; F. Kajzar, I. Rau, Random lasing in bio-polymeric dye-doped systems, Nanobiosystems: Processing, Characterization, and Applications VI, Proc. SPIE, 8817, 88170A(2013); doihttps://doi.org/10.1117/12.2025692.

94. L. Sznitko, K. Cyprych, A. Szukalski, A. Miniewicz, J. Myśliwiec, Coherent-incoherent random lasing based on nano-rubbing induced cavities, Laser Physics Letters, 11(4), 1-5 (2014).

95. D. Pörschke, in Molecular electro-optic properties of macromolecules and colloids in solution, S. Krause Ed., Plenum Press, New York 1981.

96. K. Yamaoka and K. Fukudome, Electric field orientation of nucleic acids in aqueous solutions. 1. Dependence of steady-state electric birefringence of rodlike DNA on field strength and the comparison with new theoretical orientation functions, J. Phys. Chem., 92, 4994-5001(1988), ibidem 94, 6896-6903(1990).

97. K. Yamaoka, K. Fukudome, K. Matsuda, Electric field orientation of nucleic acids in aqueous solutions. 3. Non-Kerr-law behavior of high molecular weight DNA at weak fields as revealed by electric birefringence and electric dichroism, J. Phys. Chem., 96(17), 7131-7136(1992).

98. C. T. O’Konski and N. C. Stellwagen, Structural transition produced by electric fields in aqueous sodium deoxyribonucleate, Biophys. J., 5(4), 607-613(1965).

99. D. Pörschke, A conformation change of single stranded polyriboadenyiate induced by an electric field, Nucl. Acids Res., 1, 1601-1618(1974).

100. E. Neumann, E. Werner E., A. Spratke and K. Krüger, in Colloid and Molecular Electro-Optics, B. R. Jennings and S. P. Stoyov Eds, Institute of Physics Publ., Bristol 1993.

101. J. Duchesne, J. Depireux, A. Bertinchamps, N. Cornet and J. M. Vanderkaa, Nature, 188, 405-406(1960).

102. J. C. Genereux and J. K. Barton J. K., Mechanism for DNA charge transport, Chem. Rev., 110, 1642-62(2010).

103. V. D. Lakhno, The problem of DNA conductivity, Pisma ETSCHAIA, 5(3), 400 -406 (2008).

104. D. D. Eley and D. I. Spivey, Semiconductivity of organic substances.9. nucleic acid in dry state, Trans. Faraday Soc., 58(470), 411-417(1962).

105. D. D. Eley., in Organic Semiconducting Polymers, J. E. Katon, Ed., Marcel Dekker, New York, USA, 1968, p. 259.

106. Pawlicka A., Firmino A., Vieira D., Grote J.G., Kajzar F., Gelatin- and DNA-based ionic conducting membranes for electrochromic devices. Proceed. SPIE 7487, 74870J-1 - 74870J-10(2009).

107. A. Pawlicka, F. Sentanin, A. Firmino, J. G. Grote, F. Kajzar and I. Rau, Ionically conducting DNA-based membranes for eletrochromic devices, Synt. Met., 161, 2329- 2334 (2011)

108. A. Firmino, J. G. Grote, F. Kajzar, J.-C. M’Peko, A. Pawlicka, DNA-based ionic conducting membranes, J. Appl. Phys., 10, 033704-5 (2011).

109. A. Pawlicka, J. G. Grote, F. Kajzar, I. Rau, Agar and DNA bio-membranes for electrochromic devices applications. Nonl. Opt., Quant. Opt., 45(1-2), 113-129( 2013).

Войти или Создать
* Забыли пароль?