Синтезированы высокопрочные полиэтиленовые пленки с концентрацией нанокристаллического кремния (НК- Si )0,5-1,0 масс. %. Образцы нк- Si со средним размером частиц 7-10 нм были получены плазмохимическим методом и при помощи лазерно-индуцированного расщепления моносилана. Спектральные исследования показали почти полное (до ~ 95%) поглощение УФ-излучения в спектральной области 200-400 нм пленкой с толщиной 85 микрон при содержании НК-Si 1,0 мас. %. Плотность распределения размеров частиц в исходных порошках и полимерных пленках, содержащих иммобилизованные нанокристаллиты кремния, была получены с помощью моделирования полного профиля рентгеновской дифракционной картины с включением сферических частиц и логарифмически нормального распределения. Результаты рентгеноструктурного анализа показали, что функция распределения размеров кристаллитов остается практически неизменной и кристалличность исходного полимера увеличивается до 10% при введении образцов НК-Si в полимерную матрицу.
полиэтилен, нанокристаллический кремний, пленка с защитой от УФ-излучения, полимерные нанокомпозиты, спектроскопия, рентгеновский дифракционный анализ, polyethylene, nanocrystalline silicon, UV-protective film, polymer nanocomposites, spectroscopy, X-ray diffraction analysis
1. S.V. Karpov, V.V.Slabko, Optical and Photophysical Properties of Fractally Structured Metal Sols, Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2003.
2. A.E. Varfolomeev, A.V. Volkov, D.Yu. Godovskii, et al., Pis’ma Zh. Eksp. Teor. Fiz., 62, 344 (1995).
3. C. Delerue, G. Allan, and M. Lannoo, J. Lumin. 80, 65 (1999).
4. R.K. Soni, L.F. Fonseca, O. Resto, et al., J. Lumin. 83-84,187 (1999).
5. I.S. Altman, D. Lee, J.D. Chung, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 63, 161402 (2001).
6. S. Knief and W. von Niessen, Phys. Rev. B: Condens. Matter Mater. Phys. 59, 12940 (1999).
7. A.A. Olkhov, М.А. Goldschtrakh, A.A. Ischenko RU Patent № 2009145013 (2009).
8. V.N. Bagratashvili, I.A. Tutorskii, A.I. Belogorokhov et al. // Reports of Academy of Sciences. Physical Chemistry. v. 405, 360 (2005).
9. Kumar V. (editor) Nanosilicon. Elsevier Ltd.- xiii + 368 p (2008).
10. Nanostructured Materials. Processing, Properties, and Applications. / Edited by Carl C. Koch. NY: William Andrew Publishing. 752 (2009).
11. A.A. Ischenko, S.G. Dorofeev, N.N. Kononov, et al. RU Patent №2009146715 (2009)
12. G.P. Kuzmin, M.E. Karasev, E.M. Khokhlov, et al., Laser Phys. 10, 939 (2000)
13. J. Beckman, A.A. Ischenko, RU Patent No. 2 227 015 (2003)
14. K. Stеhl The Huber G670 imaging-plate Guinier camera tested on beamline I711 at the MAX II synchrotron // J. Appl. Cryst. (2000). Vol. 33, p. 394-396.
15. G.V. Fetisov The X-ray phase analysis. Chapter 11, p. 153-184. // Analytical chemistry and physical and chemical methods of the analysis. Т. 2. / Red. A.A. Ischenko. М.: ITc Academy, 2010, - 416 p.
16. P. Scardi and M. Leoni Line profile analysis: pattern modelling versus profile fitting. // J. Appl. Cryst. (2006). V. 39, 24-31.
17. WINXPOW Version 1.06. // STOE & CIE GmbH Darmstadt/Germany - 1999.
18. M. Leoni, T. Confente and P. Scardi // PM2K: a flexible program implementing Whole Powder Pattern Modelling // Z. Kristallogr. Suppl. (2006). V. 23. P. 249-254.
19. P. Scardi Recent advancements in whole powder pattern modeling // Z. Kristallogr. Suppl. 2008. V. 27. P. 101-111
20. N. Strbeck X-ray scattering of soft matter. Springer-Verlag Berlin Heidelberg. (2007). - xx + 238 p.
21. V.I. Iveronova, U.P. Revkevich The theory of scattering of X-rays. М.: MGU. 1978. - 278 p.