Инфракрасные спектры симметричных производных пероксида бензоила (4- R - PhCOO ) 2 с R : NO 2 -, CF 3 -, CF 3 O -, I -, Br -, Cl -, F -, H -, CH 3 -, CH 3 O - были изучены полуэмпирическими методами. Существует линейная зависимость между частотами нормальных колебаний экспериментальных и расчетных (РМ6, PDDG и AM 1) спектров для этой серии пероксидов. Было оценено влияние уровня DFT на частоты нормальных колебаний С= O группы пероксида бензоила. Наилучшее воспроизведение этих частот наблюдается в случае метода расчета BLYP с базисным набором 6-311 G ( d , p ).
benzoyl peroxide, diacyl peroxides, infrared spectra, molecular modeling, semiempirical methods, DFT-methods, пероксид бензоила, диацилпероксиды, инфракрасные спектры, молекулярное моделирование, полуэмпирические методы, DFT-методы
1. Guillén, M.D.; Cabo N. Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils Food Chemistry. 2002, 77, 503-510.
2. Luk’anets, V.M.; Zhukovskij, V.Ya.; Tsvetkov, N.S.; Ginzburg, I.M. Issledovanie struktury perefirov i diatsil’nych perekisej alifaticheskih karbonovyh kislot metodom IK-spectroskopii (Investigation of peresters and diacyl peroxides of aliphatic hydrocarbon acids structure by IR spectroscopy method) Zhurnal Teoreticheskij I Eksperimental’noj Khimii. 1973, 9, 131-134.
3. Bellamy, L.I.; Connelly, B.R.; Philpotts, A.R.; Williams, R.L. Infrared spectra of anhydrides and peroxides Z. fur Elektrochem. 1960, 64, 563- 566.
4. Z’at’kov, I.P.; Sagaidachnyj, D.I; Zubareva, M.M. Kolebatel’nye spektry diatsyl’nyh peroksidov i perefirov (Vibrational spectra of diacyl peroxides and peresters) Universitetskoe: Minsk, 1984.
5. Young, D. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems; Wiley-Interscience: New York, 2001.
6. Head-Gordon, M.; Pople, A.J.; Frisch, M.J. MP2 energy evaluation by direct methods Chemical Physics Letters. 1988, 153, 503- 506.
7. Catoire, V.; Lesclaux, R.; Schneider, W.F.; Wallington, T. J. Kinetics and Mechanisms of the Self-Reactions of CCl3O2 and CHCl2O2 Radicals and Their Reactions with HO2 J. Phys. Chem. 1996, 100, 14356-14371.
8. Oxley, J.; Smith, J.; Brady, J.; Dubnikova, F.; Kosloff, R.; Zeiri, L.; Zeir, Y. Raman and Infrared Fingerprint Spectroscopy of Peroxide-Based Explosives Society for Applied Spectroscopy. 2008, 62, 906 - 915.
9. Gaussian 09, Revision A.02, Frisch, M.J.; ...; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian, Inc., Wallingford CT, 2009.
10. Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F. AM1: A New General Purpose Quantum Mechanical Molecular Model J. Am. Chem. Soc. 1985, 107, 3902-3909.
11. Stewart, J.J.P. Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements J. Mol. Model. 2007, 13, 1173-1213.
12. Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP density functional methods for a large set of organic molecule J. Chem. Theory and Comput. 2008, 4, 297-306.
13. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr J. Chem. Phys. Lett. 1989, 157, 200-206.
14. Adamo, C.; Barone, V. Toward reliable adiabatic connection models free from adjustable parameters J. Chem. Phys. Lett. 1997, 274, 242-250.
15. Hamprecht, F.A.; Cohen, A.; Tozer, D.J.; Handy, N.C. Development and assessment of new exchange-correlation functional J. Chem. Phys. 1998, 109, 6264-6271.
16. Wilson, P.J.; Bradley, T.J.; Tozer, D.J. Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials J. Chem. Phys. 2001, 115, 9233-9242.
17. 1Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories J. Chem. Phys. 1993, 98, 1372-1377.
18. Zhao, Y.; Truhlar, D.G. Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States J. Phys. Chem. A. 2006, 110, 13126-13130.
19. Cohen, A.J.; Handy, N.C. Dynamic correlation Mol. Phys. 2001, 99, 607-615.
20. Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model J. Chem. Phys. 1999, 110, 6158-6169.
21. Ernzerhof, M.; Perdew, J.P. Generalized gradient approximation to the angle- and system-averaged exchange hole J. Chem. Phys. 1998, 109, 3313-3320.
22. Xu, X.; Goddard, W.A. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties Proc. Natl. Acad. Sci. USA. 2004, 101, 2673-2677.
23. Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model J. Phys. Chem. A. 1998, 102, Р. 1995-2001.
24. www.chemcraftprog.com
25. Sax, M.; McMullan, R.K. The Crystal Structure of Dihenzoyl Peroxide and the Dihedral Angle in Covalent Peroxides Acta Cryst. 1967, 22, 281-289.
26. Antonovskij, V.L.; Khursan, S.L. Fizicheskaia khimia organicheskih peroksidov (Physical chemistry of organic peroxides) PTC “AKADEMKNIGA”: Moskva, 2003.