IR SPECTRA OF THE BENZOYL PEROXIDE SYMMETRICAL DERIVATIVES: MOLECULAR MODELING
Abstract and keywords
Abstract (English):
The infrared spectra of the benzoyl peroxide symmetrical derivatives (4-R-PhCOO) 2 with R: NO 2-, CF 3-, CF 3O-, I-, Br-, Cl-, F-, H-, CH 3-, CH 3O- were studied by the semiempirical methods. There is a linear relationship between the frequencies of the normal vibrations of the experimental and calculated (PM6, PDDG and AM1) spectra for this series of peroxides. The effect of the DFT level on the normal vibrations frequencies of C=O group of benzoyl peroxide was estimated. The best reproduction of these frequencies is observed in the case of BLYP calculation method with 6-311G (d, p) basis set.

Keywords:
benzoyl peroxide, diacyl peroxides, infrared spectra, molecular modeling, semiempirical methods, DFT-methods, пероксид бензоила, диацилпероксиды, инфракрасные спектры, молекулярное моделирование, полуэмпирические методы, DFT-методы
References

1. Guillén, M.D.; Cabo N. Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils Food Chemistry. 2002, 77, 503-510.

2. Luk’anets, V.M.; Zhukovskij, V.Ya.; Tsvetkov, N.S.; Ginzburg, I.M. Issledovanie struktury perefirov i diatsil’nych perekisej alifaticheskih karbonovyh kislot metodom IK-spectroskopii (Investigation of peresters and diacyl peroxides of aliphatic hydrocarbon acids structure by IR spectroscopy method) Zhurnal Teoreticheskij I Eksperimental’noj Khimii. 1973, 9, 131-134.

3. Bellamy, L.I.; Connelly, B.R.; Philpotts, A.R.; Williams, R.L. Infrared spectra of anhydrides and peroxides Z. fur Elektrochem. 1960, 64, 563- 566.

4. Z’at’kov, I.P.; Sagaidachnyj, D.I; Zubareva, M.M. Kolebatel’nye spektry diatsyl’nyh peroksidov i perefirov (Vibrational spectra of diacyl peroxides and peresters) Universitetskoe: Minsk, 1984.

5. Young, D. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems; Wiley-Interscience: New York, 2001.

6. Head-Gordon, M.; Pople, A.J.; Frisch, M.J. MP2 energy evaluation by direct methods Chemical Physics Letters. 1988, 153, 503- 506.

7. Catoire, V.; Lesclaux, R.; Schneider, W.F.; Wallington, T. J. Kinetics and Mechanisms of the Self-Reactions of CCl3O2 and CHCl2O2 Radicals and Their Reactions with HO2 J. Phys. Chem. 1996, 100, 14356-14371.

8. Oxley, J.; Smith, J.; Brady, J.; Dubnikova, F.; Kosloff, R.; Zeiri, L.; Zeir, Y. Raman and Infrared Fingerprint Spectroscopy of Peroxide-Based Explosives Society for Applied Spectroscopy. 2008, 62, 906 - 915.

9. Gaussian 09, Revision A.02, Frisch, M.J.; ...; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian, Inc., Wallingford CT, 2009.

10. Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F. AM1: A New General Purpose Quantum Mechanical Molecular Model J. Am. Chem. Soc. 1985, 107, 3902-3909.

11. Stewart, J.J.P. Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements J. Mol. Model. 2007, 13, 1173-1213.

12. Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP density functional methods for a large set of organic molecule J. Chem. Theory and Comput. 2008, 4, 297-306.

13. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr J. Chem. Phys. Lett. 1989, 157, 200-206.

14. Adamo, C.; Barone, V. Toward reliable adiabatic connection models free from adjustable parameters J. Chem. Phys. Lett. 1997, 274, 242-250.

15. Hamprecht, F.A.; Cohen, A.; Tozer, D.J.; Handy, N.C. Development and assessment of new exchange-correlation functional J. Chem. Phys. 1998, 109, 6264-6271.

16. Wilson, P.J.; Bradley, T.J.; Tozer, D.J. Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials J. Chem. Phys. 2001, 115, 9233-9242.

17. 1Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories J. Chem. Phys. 1993, 98, 1372-1377.

18. Zhao, Y.; Truhlar, D.G. Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States J. Phys. Chem. A. 2006, 110, 13126-13130.

19. Cohen, A.J.; Handy, N.C. Dynamic correlation Mol. Phys. 2001, 99, 607-615.

20. Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model J. Chem. Phys. 1999, 110, 6158-6169.

21. Ernzerhof, M.; Perdew, J.P. Generalized gradient approximation to the angle- and system-averaged exchange hole J. Chem. Phys. 1998, 109, 3313-3320.

22. Xu, X.; Goddard, W.A. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties Proc. Natl. Acad. Sci. USA. 2004, 101, 2673-2677.

23. Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model J. Phys. Chem. A. 1998, 102, R. 1995-2001.

24. www.chemcraftprog.com

25. Sax, M.; McMullan, R.K. The Crystal Structure of Dihenzoyl Peroxide and the Dihedral Angle in Covalent Peroxides Acta Cryst. 1967, 22, 281-289.

26. Antonovskij, V.L.; Khursan, S.L. Fizicheskaia khimia organicheskih peroksidov (Physical chemistry of organic peroxides) PTC “AKADEMKNIGA”: Moskva, 2003.

Login or Create
* Forgot password?