It is shown that by consideration of amorphous-crystal polymers as natural hybrid nanocomposites and abnormally high extent of strengthening is realized at the expense of partial recrystallization of crystallites that means participation of a crystal phase in formation of elastic properties of these polymers. It is obvious that the offered mechanism isn't applicable for the description of polymeric nanocomposites with an inorganic nanofiller.
аморфно-кристаллический полимер, естественный нанокомпозит, степень усиления, рекристаллизация, фрактальная размерность, amorphous-crystal polymer, natural nanocomposite, extent of strengthening, recrystallization, fractal dimension
1. Narisava I. Prochnost' polimernyh materialov. M.: Himiya, 1987. 400 s.
2. Bartenev G.M., Frenkel' S.Ya. Fizika polimerov. L.: Himiya, 1990. 432 s.
3. Kozlov G.V. Polymers as natural nanocomposites: the missing opportunites. // Recent Patents on Chemical Engineering. 2011. V. 4. № 1. P. 53-77.
4. Kozlov G.V., Mikitaev A.K. Polymers as Natural Nanocomposites: Unrealized Potential. Saarbrücken: LAP Lambert Academic Publishing, 2010. 323 p.
5. Kozlov G.V., Ovcharenko E.N., Mikitaev A.K. Struktura amorfnogo sostoyaniya polimerov. M.: Izd-vo RHTU im. D.I. Mendeleeva, 2009. 392 s.
6. Magomedov G.M., Kozlov G.V., Zaikov, G.E. Structure and Properties of Cross-Linked Polymers. Shawbury: A Smithers Group Company, 2001. 492 p.
7. Tanabe Y., Strobl G.R., Fisher E.W. Surface melting in melt-crystallized linear polyethylene. // Polymer. 1986. V. 27. № 8. R. 1147-1153.
8. Kozlov G.V., Shetov R.A., Mikitaev A.K. Metodiki izmereniya modulya uprugosti v udarnyh ispytaniyah polimerov. // Vysokomolekulyarnye soedineniya. 1987. T. 29. № 5. S. 1109-1110.
9. Kozlov G.V., Shetov R.A., Mikitaev A.K. Opredelenie predela vynuzhdennoy elastichnosti pri udarnom nagruzhenii polimerov po metodu Sharpi. // Vysokomolekulyarnye soedineniya. 1987. T. 29. № 9. S. 2012-2013.
10. Pegoretti A., Dorigato A., Penati A. Tensile mechanical response of polyethylene-clay nanocomposites. // EXPRESS Polymer Lett. 2007. V.1. № 3. R. 123-131.
11. Balankin A.S. Sinergetika deformiruemogo tela. M.: Izd-vo Ministerstva Oborony SSSR, 1991. 404 s.
12. Kozlov G.V., Sanditov D.S. Angarmonicheskie effekty i fiziko-mehanicheskie svoystva polimerov. Novosibirsk: Nauka, 1994. 261 s.
13. Aharoni S.M. On entanglements of flexible and rodlike polymers. // Macromolecules. 1983. V. 16. № 9. R. 1722-1728.
14. Aharoni S.M. Correlations between chains parameters and failure characteristics of polymers below their glass transition temperature. // Macromolecules. 1985. V. 18. № 12. R. 2624-2630.
15. Kalinchev E.L., Sakovceva M.B. Svoystva i pererabotka termoplastov. L.: Himiya, 1983. 288 s.
16. Aloev V.Z., Kozlov G.V. Fizika orientacionnyh yavleniy v polimernyh materialah. Nal'chik: Poligrafservis i T, 2002. 288 s.
17. Balankin A.S., Bugrimov A.L. Fraktal'naya teoriya plastichnosti polimerov. // Vysokomolekulyarnye soedineniya A. 1992. T. 34. № 5. S. 129-132.
18. Graessley W.W., Edwards S.F. Entanglement interactions in polymers and the chain contour concentration. // Polymer. 1981. V. 22. № 10. R. 1329-1334.
19. Mikitaev A.K., Kozlov G.V., Zaikov G.E. Polimernye nanokompozity: mnogoobrazie strukturnyh form i prilozheniy. M.: Nauka, 2009. 278 s.
20. Liang Z.-M., Yin J., Wu J.-H., Qiu Z.-X., He F.-F. Polyimide/montmorillonite nanocomposites with photolithographic properties. // Eur. Polymer J. 2004. V. 40. № 2. P. 307-314.