It has been shown that semicrystalline polymers can be simulated as natural nanocomposites (analogue of nanocomposites polymer/organoclay). High elasticity modulus of the indicated polymers having devitrificated phase is due to effects, occurring at their crystallization.
аморфно-кристаллический полимер, естественный нанокомпозит, модуль упругости, композитная модель, semicrystalline polymer, natural nanocomposite, elasticity modulus, composite model
1. Bartenev, G.M. Frenkel', S.Ya. Fizika polimerov - L.: Himiya, 1990. - 432 s.
2. Kalinchev, E.L. Sakovceva, M.B. Svoystva i pererabotka termoplastov - L.: Himiya, 1983. - 288 s.
3. Kardos, J.L. Raisoni, J. The potential mechanical response of macromolecular systems - a composite analogy. // Polymer Engng. Sci., 1975, Vol. 15, № 3, P. 183-190.
4. Kozlov, G.V. Mikitaev, A.K. Polymers as Natural Nanocomposites: Unrealized Potential - Saarbrücken: Lambert Academic Publishing, 2010. -323 p.
5. Magomedov, G.M. Kozlov, G.V. Zaikov, G.E. Structure and Properties of Cross-Linked Polymers - Shawbury: A Smithers Group Company, 2011. - 492 p.
6. Mikitaev, A.K. Kozlov, G.V. Zaikov, G.E. Polymer Nanocomposites: Variety of Structural Forms and Applications - New York: Nova Science Publishers, Inc., 2008. - 319 p.
7. Kozlov, G.V. Mikitaev, A.K. Structure and Properties of Nanocomposites Polymer/Organoclay - Saarbrücken: LAP LAMBERT Academic Publishing GmbH, 2013. - 318 p.
8. Aloev, V.Z. Kozlov, G.V. Fizika orientacionnyh yavleniy v polimernyh materialah - Nal'chik: Poligrafservis i T, 2002. - 288 s.
9. Kozlov, G.V. Ovcharenko, E.N. Mikitaev, A.K. Struktura amorfnogo sostoyaniya polimerov - M.: Izd-vo RHTU im. D.I. Mendeleeva, 2009. -392 s.
10. Kozlov, G.V. Aloev, V.Z. Teoriya perkolyacii v fiziko-himii polimerov - Nal'chik: Poligrafservis i T, 2005. - 148 s.
11. Tugov, I.I. Shaulov, A.Yu. Modul' uprugosti dispersno-napolnennyh kompozitov // Vysokomolek. soed. B. - 1990. - T. 32. - № 7. - S. 527-529.