It was studied the influence of low-molecular salt on the rheological and structural properties of cationic surfactants- acetate oleylamidopropyldimethylammonium (OAPA). It is shown that micellar solutions of OAPA viscosity changes extremely with increasing salt concentration, which is caused by varying the flexibility of the contour length and secondary cylindrical length of surfactant micelles.
цилиндрические мицеллы, диффузионно-волновая спектроскопия, персистентная длина, средняя контурная длина мицелл, cylindrical micelles, the diffusion-wave spectroscopy, the persistence length, the average contour length of the micelles
1. Rusanov, A.I. Micelloobrazovanie v rastvorah poverhnostno-aktivnyh veschestv [Tekst] / A.I. Rusanov. - SPb.: Himiya, 1992. - 280 s.
2. Adamson, A. Fizicheskaya himiya poverhnostey [Tekst] / A. Adamson. - M.: Mir, 1979. - 586 s.
3. Selivanova, N.M. Sravnitel'naya ocenka zhidkokristallicheskih svoystv i strukturnyh harakteristik liotropnyh metallomezogenov na osnove oksietilirovannyh neionnyh PAV. / Selivanova N.M., Shihobalova O.V., Gubaydullin A.T., Galyametdinov Yu.G. // Vestnik Kazanskogo tehnologicheskogo universiteta tom 10, 2013 - 59 s
4. Rafikova, A.N. Ekologichnyy ingibitor soleotlozheniy na osnove cvitter-ionnyh PAV / Rafikova A.N., Mingazov R.R., Rahmatullin R.R., Bashkirceva N.Yu. // Vestnik Kazanskogo tehnologicheskogo universiteta tom 5, 2013 - 246 s
5. Tanford, C. The hydrophobic effect: formation of micelles and biological membranes [Tekst] / C. Tanford. - N.Y.: Wiley - Interscience publication, 1980. - 223 r.
6. Raghavan, S. R. Langmuir. 2001. V.17. P.300.
7. Hoffmann, H. Structure and Flow in Surfactant Solutions / Hoffmann H., Herb C.A., Prudhomme R. // ACS Symp. Washington, DC, 1994. P.2.
8. Rehage, H, Hoffmann H. «Viscoelastic surfactant solutions: model systems for rheological research». / Rehage H., Hoffmann H. // Mol. Phys., 1991, v.74(5), p.933.
9. Cates, M.E. «Reptation of living polymers: Dynamics of entangled polymers in the presence of reversible chain-scission reactions». // Macromolecules, 1987, v.20, p.2289.
10. Waigh, T.A. Microrheology of complex fluids. // Report on Progress in Physics, 68 (2005) 685-742.
11. Squires, T.M. Brady J.F., A simple paradigm for active and nonlinear microrheology. // Physics of Fluids, 17 (2005) 073101.
12. Mason, T.G. Estimating the viscoelastic moduli of complex fluids using the generalised Stokes Einstein equation, RHEOLOGICA // Acta. 39 (2000)371-378.
13. Dasgupta, B.R. Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. / Dasgupta B.R., Tee S-Y., Crocker J.C., Frisken B.J., Weitz D.A., // Physical Review E, 65 (2002) 051505.
14. Hemar, Y. Monitoring of flocculation and creaming of sodium-caseinate-stabilized emulsions using diffusing-wave spectroscopy / Hemar Y., Pinde D.N., Hunter R.J., and al., // Journal of Colloids and Interfacial Science, 264 (2003) 502508.
15. Granek, R. Stress relaxation in living polymers: results from Poisson renewal model [Text] / R. Granek, M.E. Cates // J. Chem. Phys. - 1992. - V.96(6) - P.4758.
16. Finsy, R. Particle sizing by quasi-elastic light scattering. Adv. // Colloid Interface Sci. 52 (1994), 79-143.
17. Gardel, M.L. Microrheology, In: Micro scale Diagnostic Techniques K. Breuer (Ed.) / Gardel M.L., Valentine M.T., Weitz D. A. // Springer Verlag (2005)
18. Wong, I.Y. Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. / Wong I.Y., Gardel M.L. Reichman D.R., Weeks E.R., Valentine M.T. Bausch A.R. Weitz D.A. // physical review letters.92 (2004) 178101.