Methods for probe analysis of EPR-spectroscopy, differential scanning calorimetry (DSC) and the X-ray analysis (XRD) at high angles, as well as UV-spectroscopy examined the molecular dynamics, structure, diffusion, mechanical properties, ozone oxidation of segmented polyurethane (SPÈU). It is shown that the molecular mobility, described as the correlation time of the probe (τ), increases during the initial phase of stretching for the isotropic and poorly – oriented polyurethane films, where it decreases for high – oriented films in the whole target range with a segmented polyurethane (SPÈU). Similar patterns were obtained for the diffusion coefficient (D), which confirms the change of packing density of macromolecules in the deformation. Ozon oxidation, both loaded and in the free state, leads to increased stiffness of the chains, which is manifested in the growth module of elasticity, the correlation time and activation energy.
биодеградируемые композиции, кристалличность, зондовый метод ЭПР, ДСК, РСА, озон, вода, время корреляции, хлоргексидин, полиэфируретан, диффузия, молекулярная подвижность, biodegradable composition, crystallinity probe EPR, DSC, XRD, ozone, water, the correlation time, chlor-hexidine, polyester urethane, diffusion, molecular mobility
1. Long Yu, Katherine Dean, Lin Li. Prog. Polym. Sci. 31 (2006) 576-602
2. L.A.Utracki.(Ed). Polymer blends. Handbook. Vol.1. Kluver Academic Publisher. Dodrecht. 2002.
3. Karpova S.G., Iordanskiy A.L., Klenina N.S., Popov A.A., Lomakin S.M., Shilkina N.G., Rebrov A.V., Zaikov G.E., Abzal'dinov H.S. Vliyanie temperaturnogo vozdeystviya v vodnoy srede na strukturu i molekulyarnuyu dinamiku smesevoy kompozicii PGB s hitozanom // Vestnik Kazanskogo tehnologicheskogo universiteta. 2013. №2. S. 92-96
4. Ikejima T., Yagi K., Inoue Y.// Macromol. Chem. Phys. 1999. V. 200(2). P. 413.
5. Manabus S. Polimery medicinskogo naznacheniya / Per. s yaponsk. pod red. A. M. Sladkogo. M.: Medicina, 1981.
6. Mandelkern L., Allon A. // J. Polimer Sci. 1966. B 4. V. 4. P. 447.
7. Shtil'man M.I. Polimery mediko-biologicheskogo naznacheniya. M.: Akademkniga, 2006.
8. Shi R., Chen D., Liu Q. et al. // Int. J. Mol. Sci. 2009.10. P. 4223.
9. Boshomdzhiev A.P., Bonarcev A.P., Ivanov E.A., Mahina T.K., Myshkina V.L. i dr. // Plasticheskie massy. 2009. № 8. S. 13.
10. Bonarcev A.P., Iordanskiy A.L., Bonarceva G.A. i dr. // Plasticheskie massy. 2010. № 3. S. 6.
11. Manno M., Emanuele A., Martorana V., San Biagio P.,Bulone D. // Biopolymers. 2005. № 59 (1). P. 51.
12. Youling Y., Fei A., Xiaopeng Z., Wei Z., Jian S., Sicong L. // Colloids and Surfaces B: Biointerfaces. 2004. V. 35.
13. Karpova S.G., Popov A.A., Zhukova E.E., Shtil'manM.I., Iordanskiy A.L. // Plasticheskie massy. 2011. № 7. C. 1404.
14. Karpova S.G., Popov A.A., Hvatov A.V., Klenina N.S., Iordanskiy A.L. // Him. fizika. 2011. № 2. C. 80.
15. Suttiwijitpuhdee N., Sato H., Zhang J., Hashimoto T. //Polymer. 2011. V. 52. P. 461.
16. Popov A. A., Karpova S. G., Podkopaeva E. V., Kovarskiy A. L. I dr. // Vysokomolekulyar. soedineniya. A. 1980. T. 22. № 4. S. 868.
17. Karpova S. G., Popov A. A., Chvalun S. N. i dr. // Vysokomolekulyar. soedineniya. B. 1985. T. 27. № 9. S. 686.
18. Zhul'kina A.L., Ivancova E.L., Filatova A.G.i dr. // Kristallografiya. 2009. T. 54. № 2. S. 1.
19. Ozerin A. N. Dis. … kand. him. nauk. M.: NIFHI im. Karpova, 1977.