The molecular mobility of poly(3-hydroxybutyrate) (PHB) was studied in the temperature interval from 20 to 90 °C by EPR using stable nitroxyl radicals 2,2,6,6-tetramethyl-1-piperidinyloxy (Tempo) and 4-hydroxy-2,2,6,6-tetramethyl-1- piperidinyloxy (Tempol) as spin probes. Two series of PHB samples, prepared by different methods, possessed isotropic and textured morphologies. The noncrystalline phase of PHB contain regions of two types with markedly different molecular mobilities. It is suggested that “dense” regions, characterized by a comparatively low mobility of polymer chains, are located near the surface of crystalline grains, while the “loose” (amorphous) regions with a higher mobility of chains are more distant from the surface of grains. Molecular mobility in the dense regions was virtually the same for both isotropic and textured PHB samples, whereas the mobility in the loose regions was lower in the isotropic samples than in the textured ones. Saturation of the polymer with water vapor affected both the mobility of polymer chains and the relative content of loose and dense regions in the samples.
poly(3-hydroxybutyrate), molecular mobility, EPR, поли(3-гидроксибутират), молекулярная подвижность, ЭПР
1. Doi, Y., Microbial Polyesters, Weinheim: VCH, 1990.
2. Chodak I. Polyhydroxyalkanoates: Origin, Properties and Applications. (In: Monomers, Polymers and Composites from Renewable Resources. Eds: Belgacem M., Gandini A.). 2008. Elsevier. NY. P. 566. Ch.22. ISBN: 978-0-08-045316-3.
3. Karpova S.G., Iordanskiy A.L., Chvalun S.N., Lomakin S.M., Shilkina N.G., Popov A.A., Zaikov G.E., Abzaldinov Kh.S. Vliyanie vneshnikh vozdeystviy na stukturno-dinamicheskiye parametry polymerov medetsinskogo naznacheniya. Soobsheniye 1 // Vestnik Kazanskogo technologicheskogo universiteta, 2013. № 22. PP. 110-116
4. Seebach, D., Brunner, A., Bachmann, B.M., Hoffman, T., Kuhnle, F.N.M., and Lengweiler, U.D., Biopolymers, and Oligomers of (R)-3-hydroxyalkanoic Acids-Contributions of Synthetic Organic Chemists. Berlin: Ernst Schering Research Foundation, 1995.
5. Artsis, M.I., Bonartsev, A.P., Iordanskii, A.L., Bonartseva, G.A., Zaikov, G.E. 2012. Molecular Crystals and Liquid Crystals 555 , pp. 232-262. Biodegradation and medical application of microbial poly(3-Hydroxybutyrate).
6. Wu, Q., Wang, Y., Chen, G.-Q. 2009. Artificial Cells, Blood Substitutes, and Biotechnology 37 (1) , pp. 1-12.
7. Chen, G.-Q., Wu, Q. 2005. Biomaterials 26 (33) , pp. 6565-6578.
8. Krivandin, A.V., Shatalova, O.V., and Iordanskii, A.L., Polymer Science, Ser. B, 1997, vol. 39, no. 11, p. 1865.
9. Krivandin, A.V., Shatalova, O.V., and Iordanskii, A.L., Polymer Science, Ser. B, 1997, vol. 39, no. 3, p. 27
10. Iordanskii, A.L. and Kamaev, P.P., Polymer Science, Ser. B, 1998, vol. 40, no. 1, p. 411.
11. Iordanskii, A.L. and Kamaev, P.P., Polymer Science, Ser. B, 1999, vol. 41, no. 2, p. 121
12. Iordanskii, A.L., Krivandin, A.V., Startzev, O.V., Kamaev, P.P., and Hanggi, U.J., in: Frontiers in Biomedical Polymer Applications, Ottenbrite, R.M., Ed., Lancaster:Technomic Publ. 1999, Vol. 2.
13. Kuptsov A.H., G.N. Zhizhin. Handbook of Fourier Transform Raman and Infrared Spectra of Polymers, Volume 45 (Physical Sciences Data). Elsevier. Amsterdam.1998.
14. Seebach, D., Burger, H.M., Muller, H.M., Lengweiler, U.D., and Beck, A.K., Helv. Chim, Acta, 1994, vol. 77, p. 1099.
15. Lambeek, G., Vorenkamp, E.J., and Schouten, A.J., Macromolecules, 1995, vol. 28, no. 6, p. 2023.
16. Buchachenko, A.L. and Vasserman, A.M., Stabil’nye radikaly (Stable Radicals), Moscow: Khimiya, 1973.
17. Vasserman, A.M. and Kovarskii, A.L., Spin Labels and Spin Probes in the Physical Chemistry of Polymers), Moscow: Nauka, 1986.
18. Spin Labeling: Theory and Applications, Berliner, L.J., Ed., New York: Academic, 1976.
19. Timofeev, V.P. and Samariznov, B.A., Appl. Magn. Res, 1994, vol. 4, p. 523.