This paper solves the task of complex objects approximation with digital output based on information approach to modeling. Propose a model of fuzzy rules and the inference algorithm on the rules. Describes the neuro-fuzzy model for a knowledge base generation. The approximation of known data sets and comparison of the results with results of other authors is performed. Using the example of knowledge bases generation of the expert diagnostic systems in medicine, oil industry and information security shows effectiveness of the proposed approach.
моделирование, аппроксимация, сложный объект, нечетко-продукционное правило, нейронечеткая модель, база знаний, modeling, approximation, complex object, fuzzy production rule, neuro-fuzzy model, knowledge base
1. Buhtoyarov V.V. Trehstupenchatyy evolyucionnyy metod formirovaniya kollektivov neyronnyh setey dlya resheniya zadach klassifikacii // Programmnye produkty i sistemy. - 2012. - № 4. - S. 101-106.
2. Veselovskiy V.P. Prakticheskaya vertebronevrologiya i manual'naya terapiya. Riga. 1991. 344 s.
3. Glova V.I., Anikin I.V., Katasev A.S. Sistema preduprezhdeniya avariy oborudovaniya v processah podderzhaniya plastovogo davleniya // Vestnik Kazanskogo gosudarstvennogo tehnicheskogo universiteta im. A.N. Tupoleva, № 2, 2006. - S. 46-49.
4. Katasev A.S. Formirovanie bazy znaniy sistemy fil'tracii elektronnyh pochtovyh soobscheniy // Nauchno-tehnicheskiy vestnik Povolzh'ya, № 5, 2013. - S. 191-194.
5. Katasev A.S., Ahatova Ch.F. Neyronechetkaya sistema obnaruzheniya produkcionnyh zavisimostey v bazah dannyh // Programmnye produkty i sistemy. - 2011. - № 3. - S. 26-32.
6. Katasev A.S., Gazimova D.R. Invariantnaya nechetko-produkcionnaya model' predstavleniya znaniy v ekspertnyh sistemah // Vestnik KGTU im. A.N. Tupoleva. - 2011. - № 1. - S. 142-148.
7. Katasev A.S., Podol'skaya M.A. Primenenie sistem iskusstvennogo intellekta dlya diagnosticheskogo processa v vertebronevrologii // Kazanskiy medicinskiy zhurnal, tom 88, № 4, 2007. - S. 346-351.
8. Kirpichnikov A.P., Osipova A.L., Rizaev I.S. Povyshenie analiticheskih vozmozhnostey baz dannyh // Vestnik Kazan. tehnol. un-ta. - 2012. - № 3. - S. 157-160.
9. Paklin N.B. Adaptivnye modeli nechetkogo vyvoda dlya identifikacii nelineynyh zavisimostey v slozhnyh sistemah: Diss. na soisk. uch. step. k-ta tehn. nauk. - Izhevsk, 2004. - 162 s.
10. Paklin N.B., Oreshkov V.I. Biznes-analitika: ot dannyh k znaniyam: uchebnoe posobie. - 2-e izd., ispr. - SPb.: Piter, 2013. - 704 s.: il.
11. Podol'skaya M.A., Nuriev Z.Sh. Komp'yuterno-tomograficheskoe issledovanie paravertebral'nyh myshc na poyasnichnom urovne pri distroficheskih vertebrogennyh zabolevaniyah // Medicinskaya vizualizaciya. 2004. № 4. S. 127-136.
12. Popelyanskiy Ya.Yu. Vertebral'nye sindromy poyasnichnogo osteohondroza. - Kazan', 1974. - 284 s.
13. Rotshteyn A.P. Intellektual'nye tehnologii identifikacii: nechetkaya logika, geneticheskie algoritmy, neyronnye seti. - Vinnica: UNIVERSUM - Vinnica, 1999. - 320 s.
14. Titov A.N., Nuriev N.K., Tazieva R.F. Ocenka parametrov veroyatnostnoy modeli po eksperimental'nym dannym // Vestnik Kazan. tehnol. un-ta. - 2013. - № 19. - S. 324-330.
15. Shtovba S.D. Klassifikaciya ob'ektov na osnove nechetkogo logicheskogo vyvoda // Exponenta Pro - Matematika v prilozheniyah. - 2004. -№ 1(5). - S. 68-69.
16. Bache K., Lichman M. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. 2013.