A gradient dependence of the effective viscosity η for the concentrated solutions of the polystyrene in toluene at three concentrations ρ = 0,4∙10 5; 0,5∙10 5; 0,7∙10 5 g/m 3 correspondingly for the fourth fractions of the polystyrene with the average molar weights М = 5,1∙10 4; 4,1∙10 4; 3,3∙10 4; 2,2∙10 4 g/mole respectively has been experimentally investigated . For every pair of the values ρ and М a gradient dependence of the viscosity was studied at four temperatures: 25, 30, 35 and 40° С . An effective viscosity of the melts of polystyrene was studied for the same fractions, but at the temperatures 190, 200 and 210° С . The investigations have been carried out with the use of the rotary viscosimeter «Rheotest 2.1 » under the different angular velocities ω of the working cylinder rotation . An analysis of the dependencies η(ω) permitted to mark the frictional η f and elastic η e components of the viscosity ant to study their dependence on temperature Т, concentration ρ and on the length of a chain N. It was determined, that the relative movement of the intertwined between themselves polymeric chains into m-ball, which includes into itself the all possible effects of the gearings, makes the main endowment into the frictional component of the viscosity. The elastic component of the viscosity η е is determined by the elastic properties of the conformational volume of the m-ball of polymeric chains under its shear strain. The numerical values of the characteristic time and the activation energy of the segmental movement were obtained on the basis of the experimental data. In a case of a melt the value of E and ΔS*/R are approximately in two times more than the same values for the diluted and concentrated solutions of the polystyrene in toluene; this means that the dynamic properties of the polymeric chains in melt are considerably near to their values in polymeric matrix than in solutions. Carried out analysis and generalization of the obtained experimental data show that as same as for low-molecular liquids the studying of the viscosity of polymeric solutions permits sufficient adequate to estimate the characteristic time of the segmental movement accordingly to which the coefficients of polymeric chains diffusion can be calculated in solutions and melt, in other words, to determine their dynamic characteristics.
effective viscosity, frictional and elastic components of the viscosity, m-ball, segmental motion, activation energy, эффективная вязкость, фрикционный и упругий компоненты вязкости, клубок, сегментальная подвижность, энергия активации
1. Ferry J. D. Viscoelastic Properties of Polymers / J. D. Ferry - N.Y.: John Wiley and Sons, 1980. - 641 p.
2. De Gennes P. G. Scaling Concepts in Polymer Physics / P.G. de Gennes - Ithaca: Cornell Univ. Press, 1979. - 300 p.
3. Tsvietkov V. N. The Structure of Macromolecules in Solutions / V. N. Tsvietkov, V. E. Eskin, S. Ya. Frenkel - M.: «Nauka», 1964. - 700 p. (in Russian)
4. Malkin A. Ya. Rheology: Conceptions, Methods, Applications / A. Ya. Malkin, A. I. Isayev - M.: «Proffesiya», 2010. - 560 p. (in Russian)
5. Grassley W. W. The Entanglement Concept in Polymer Rheology / W. W. Grassley // Adv. Polym. Sci. - 1974. - v. 16. - p. p. 1-8.
6. Eyring H. Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates / H. Eyring // J. Chem. Phys. - 1936. - v. 4. - p. p. 283-291.
7. Peterlin A. Gradient Dependence of the Intrinsic Viscosity of Linear Macromolecules / A. Peterlin, M. Čopic // J. Appl. Phys. - 1956. - v. 27. - p. p. 434-438.
8. Ikeda Ya. On the effective diffusion tensor of a segment in a chain molecule and its application to the non-newtonian viscosity of polymer solutions / Ya. Ikeda // J. Phys. Soc. Japan. - 1957. - v. 12. - p. p. 378-384.
9. Hoffman M. Strukturviskositat und Molekulare Struktur von Fadenmolekulen / M. Hoffman, R. Rother // Macromol. Chem. - 1964. - v. 80. - p. p. 95-111.
10. Leonov A. I. Theory of Tiksotropy / A. I. Leonov, G. V. Vynogradov // Reports of the Academy of Sciences of USSR. - 1964. - v. 155. - № 2. - p. p. 406-409.
11. Williams M. C. Concentrated Polymer Solutions: Part II. Dependence of Viscosity and Relaxation Time on Concentration and Molecular Weight / M. C. Williams // A. I. Ch. E. Journal. - 1967. - v. 13. - № 3 - p. p. 534-539.
12. Bueche F. Viscosity of Polymers in Concentrated Solution / F. Bueche // J. Chem. Phys. - 1956. - Vol. 25. - P. 599 - 605.
13. Edvards S. F. The Effect of Entanglements of Diffusion in a Polymer Melt / S. F. Edvards, J. W. Grant // Journ. Phys. - 1973. - v. 46. - p. p. 1169-1186.
14. De Gennes P. G. Reptation of a Polymer Chain in the Presence of Fixed Obstacles / P. G de Gennes // J. Chem. Phys. - 1971. - v. 55. - p. p. 572-579.
15. Medvedevskikh Yu. G. Gradient Dependence of the Viscosity for Polymeric Solutions and Melts / Yu. G. Medvedevskikh, A. R. Kytsya, L. I. Bazylyak, G.E Zaikov // Conformation of Macromolecules. Thermodynamic and Kinetic Demonstrations - N. Y.: Nova Sci. Publishing, 2007. - p. p. 145-157.
16. Medvedevskikh Yu. G. Phenomenological Coefficients of the Viscosity of Low-Molecular Simple Liquids and Solutions / Medvedevskikh Yu. G., Khavunko O. Yu. // Collection Book: Shevchenko’ Scientific Society Reports - 2011 - v. 28 - p. p. 70 - 83 (in Ukrainian).
17. Medvedevskikh Yu. G. Viscosity of Polymer Solutions and Melts / Yu. G. Medvedevskikh // Conformation of Macromolecules Thermodynamic and Kinetic Demonstrations - N. Y.: Nova Sci. Publishing, 2007. - p. p. 125-143.
18. Medvedevskikh Yu. G. Statistics of Linear Polymer Chains in the Self-Avoiding Walks Model / Yu. G. Medvedevskikh // Condensed Matter Physics. - 2001. - vol. 2. - № 26. - p. p. 209-218.
19. Medvedevskikh Yu. G. Conformation and Deformation of Linear Macromolecules in Dilute Ideal Solution in the Self-Avoiding Random Walks Statistics / Yu. G. Medvedevskikh // Journ. Appl. Polym. Sci, 2008. - v.109. - № 4.
20. Medvedevskikh Yu.G., Khavunko O.Yu., Bazylyak L.I., Zaikov G.E. Viscoelastic properties of the polystyrene in concentrated solutions and melts (Rart 1). Vestnik Kazanskogo tekhnologicheskogo universiteta. - 2014. - T.17. - №1. - P.155-164.
21. Medvedevskikh Yu. Frictional and Elastic Components of the Viscosity of Polysterene-Toluene Diluted Solutions / Yu. Medvedevskikh, O. Khavunko // Chemistry & Chemical Technology - 2011 - v. 5 - № 3 - p. p. 291-302.
22. Medvedevskikh Yu. G. Conformation of Linear Macromolecules in the Real Diluted Solution / Yu. G. Medvedevskikh., L. I. Bazylyak, A. R. Kytsya // Conformation of Macromolecules Thermodynamic and Kinetic Demonstrations - N. Y.: Nova Sci. Publishing, 2007. - p. p. 35-53.
23. Kuhn H. Effects of Hampered Draining of Solvent on the Translatory and Rotatory Motion of Statistically Coiled Long-Chain Molecules in Solution. Part II. Rotatory Motion, Viscosity, and Flow Birefringence / H. Kuhn, W. Kuhn // J. Polymer. Sci. - 1952. - v. 9. - p. p. 1-33.
24. Tobolsky A. V. Viscoelastic Properties of Monodisperse Polystyrene / A. V. Tobolsky, J. J. Aklonis, G. Akovali // J. Chem. Phys. - 1965. - v. 42. - № 2 - p. p. 723-728.
25. Medvedevskikh Yu. G. Kinetics of Bimolecular Radicals Decay in Different Polymeric Matrixes / Yu. G. Medvedevskikh, A. R. Kytsya, O. S. Holdak, G. I. Khovanets, L. I. Bazylyak, G. E. Zaikov // Conformation of Macromolecules Thermodynamic and Kinetic Demonstrations - N. Y.: Nova Sci. Publishing, 2007. - p. p. 139-209.
26. Medvedevskikh Yu. G. Diffusion Coefficient of Macromolecules into Solutions and Melts / Yu. G. Medvedevskikh // Conformation of Macromolecules. Thermodynamic and Kinetic Demonstrations - N. Y.: Nova Sci. Publishing, 2007 - p. p. 107-123.