The photoelectric characteristics of the newly synthesized polyimides PI are investigated by using the electrophotographic method. A novel conjugated polymers, polyimides based on N,N’,N”,N”’-substituted paraphenylenediamine and dianhydrides of aromatic tetracarboxylic acids, was prepared via Suzuki coupling reaction. The polymer exhibits excellent solubility in common organic solvent, and has high thermal stability such as T d10 at 453 0C in nitrogen atmosphere and T g at about 140 0C. The photoelectric sensitivity of the PI films (3 m thickness) is observed in the UV, and visible spectral regions, due to the interactions with charge transfer between donor and acceptor fragments of the PI chains (formation of charge transfer complex, CTC). Study of the photogeneration quantum yield field dependence gives the evidence that the photogeneration mechanism is a field assisted thermo-dissociation of radical ion pairs kinetically associated with the excited CTC. The second important mechanism of photogeneration is photostimulation of long-lived stable cation-radicals of the donor PI fragments, representing the hole (major carriers) captured by deep centers (photostimulated currents). Accumulation of the cation-radicals in the dark and photoprocesses leads to the dependence of photovoltaic characteristics on the number of charge-discharge cycles of the sample.
electrophotographic method, polyimides, Suzuki coupling reaction, photoelectric characteristics, photoelectric sensitivity, charge transfer complex, photogeneration quantum yield, photogeneration mechanism, cation-radical, anion-radical, photovoltaic characteristics, электрофотографический метод, полиимиды, реакция сочетания Сузуки, фотоэлектрические характеристики, фотоэлектрическая чувствительность, комплексный перенос заряда, фотогенерация квантовый выход, механизм фотогенерации, катион-радикальные, анион-радикальные, фотоэлектрические характеристики
1. Beaujuge P.M., Vasilyeva S.V., Ellinger S., McCarley T.D., Reynolds J.R. // Macromolecules 2009, V. 42, P. 3694-3706.
2. Han, F. S.; Higuchi, M.; Kurth, D. G. // Adv Mater 2007, 19, 3928-3931.
3. Udum, Y. A.; Yildiz, E.; Gunbas, G.; Toppare, L. // J Polym Sci Part A: Polym Chem 2008, 46, 3723-3731.
4. Thompson, B. C.; Kim, Y. G.; McCarley, T. D.; Reynolds, J. R. // J Am Chem Soc 2006, 128, 12714-12725.
5. Michinobu, T.; Kumazawa, H.; Otsuki, E.; Usui, H.; Shigehara, K. // J Polym Sci Part A: Polym Chem 2009, 47, 3880-3891.
6. Elschner, A.; Heuer, H. W.; Jonas, F.; Kirchmeyer, S.; Wehrmann, R.; Wussow, K. // Adv Mater 2001, 13, 1811-1814.
7. Winter, A.; Friebe, C.; Chiper, M.; Hager, M. D.; Schubert, U.S. // J Polym Sci Part A: Polym Chem 2009, 47, 4083-4098.
8. Forrest, S. R. // Nature 2004, 428, 911-918.
9. Liao, L.; Cirpan, A.; Chu, Q.; Karase, F. E.; Pang, Y. // J Polym Sci Part A: Polym Chem 2007, 45, 2048-2058.
10. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. // Science 1995, 270, 1789-1791.
11. Kitamura, M.; Arakawa, Y. // Appl Phys Lett 2009, 95, 023503-02503(3).
12. Dimitrakopoulos, C. D.; Malenfant, P. R. L. // Adv Mater 2002, 14, 99-117.
13. Liu, P.; Wu, Y.; Pan, H.; Li, Y.; Gardner, S.; Ong, B. S.; Zhu, S. // Chem Mater 2009, 21, 2727-2732.
14. Roberts, M. E.; LeMieux, M. C.; Sokolov, A. N.; Bao, Z. // Nano Lett 2009, 9, 2526-2531.
15. Durben, S.; Nickel, D.; KruE ger, R. A.; Sutherland, T. C.; Baumgartner, T. // J Polym Sci Part A: Polym Chem 2008, 46, 8179-8190.
16. Segura, J. L.; Martin, N.; Guldi, D. M. // Chem Soc Rev 2005, 34, 31-47.
17. Chang, Y. T.; Hsu, S. L.; Su, M. H.; Wei, K. H. // Adv Mater 2009, 21, 2093-2097.
18. Zhou, E. J.; Tan, Z. A.; He, Y. J.; Yang, C. H.; Li, Y. F. // J Polym Sci Part A: Polym Chem 2007, 45, 629-638.
19. Ling, Q. D.; Liaw, D. J.; Zhuc, C.; Chanc, D. S. H.; Kang, E. T.; Neoh, K. G. Prog Polym Sci 2008, 33, 917-978.
20. Ling, Q. D.; Liaw, D. J.; Teo, E. Y. H.; Zhu, C.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G. // Polymer 2007, 48, 5182-5201.
21. Scherf, U.; List, E. J. W. // Adv Mater 2002, 14, 477-487.
22. Naga, N.; Tagaya, N.; Noda, H.; Imai, T.; Tomoda, H. // J Polym Sci Part A: Polym Chem 2008, 46, 4513-4521.
23. Wang, B.; Shen, F.; Lu, P.; Tang, S.; Zhang, W.; Pan, S.; Liu, M.; Liu, L.; Qiu, S.; Ma, Y. // J Polym Sci Part A: Polym Chem 2008, 46, 3120-3127.
24. Xu, Y.; Guan, R.; Jiang, J.; Yang, W.; Zhen, H.; Peng, J.; Cao, Y. // J Polym Sci Part A: Polym Chem 2008, 46, 453-463.
25. Ranger, M.; Rondeau, D.; Leclerc, M. // Macromolecules 1997, 30, 7686-7691.
26. Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.; Inbasekaran, M.; Woo, E. P. // Appl Phys Lett 1998, 73, 2453-2455.
27. Posadas, D.; Florit, M. I. // J Phys Chem B 2004, 108, 15470-15476.
28. Sonmez, G.; Wudl, F. // J. Mater Chem 2005, 15, 20-22.
29. Rosseinsky, D. R.; Montimer, R. // J. Adv Mater 2001, 13, 783-793.
30. Durmus, A.; Gunbas, G. E.; Camurlu, P.; Toppare, L. // Chem Commun 2007, 31, 3246-3248.
31. Ogino, K.; Kanagae, A.; Yamaguchi, R.; Sato, H.; Kurtaja, // J. Macromol Rapid Commun 1999, 20, 103-106.
32. Yu, W. L.; Pei, J.; Huang, W.; Heeger, A. // J. Chem Commun 2000, 8, 681-682.
33. Chou, M. Y.; Leung, M. K.; Su, Y. O.; Chiang, S. L.; Lin, C. C.; Liu, J. H.; Kuo, C. K.; Mou, C. Y. // Chem Mater 2001, 16, 654-661.
34. Wu, H.-U., Wang K.-L., Liaw, D.-J., Lee, K.-R., Lai, J.-Y. // J. Polym Sci: Part A: Polym Chem, 2010, 48, 1469-1476.
35. Kotov B.V., Berendyaev V.I., Rumyantsev B.M., Bespalov B.P., Lunina E.V., Vasilenko N.A. Molecular Design of Highly Sensitive Soluble Photoconductive Polyimides. // Doklady RAS, Physical Chemistry, 1999, v.367, p.183-187.
36. Rumyantsev B.M., Berendyaev V.I., Tsegel’skaya A.Yu., Kotov B.V. Molecular Aggregate Formation and Microphase Segregation Effects on the Photoelectrical and Photovoltaic Properties of Polyimide-Perylenediimide Composite Films. // Mol. Cryst. Liq. Cryst., 2002, v.384, p.61-67.
37. Rumyantsev B.M., Berendyaev V.I., Golub A.S., Lenenko N.D., Novikov Yu.N., Krinichnaya E.P., Zhuravleva T.S. Organic-Inorganic Polymer Nanocomposites for Photovoltaics. J. High Energy Chem. 2008, v.42, № 7, p.61-63.
38. Mal’tsev E.I., Berendyaev V.I., Brusentseva M.A., Tameev A.R., Kolesnikov V.A., Kozlov A.A., Kotov B.V., Vannikov A.V. Aromatic Polyimides as Efficient Materials for Organic Electroluminescent Devices. // Polym. International. 1997, v.42, p.404.
39. Muhlbacher D., Brabec C.J., Sariciftsi N.S., Kotov B.V., Berendyaev V.I., Rumyantsev B.M., Hummelen J.C. Sensitization of Photoconductive Polyimides for Photovoltaic Applications. // Synth. Metals. 2001, v.121, p.1550-1551.
40. Rumyantsev B.M., Berendyaev V.I. Organic Polymer p-n Heterostructures for Optoelectronics // J. Chem. Phys. (Russian) in press.
41. Marjanovich N., Singh Th.B., Deunler G., Gunes S., Neugebauer H., Sariciftsi N.S. Schwodianer R., Bauer S. Photoresponse of Organic Field-Effect Transistors Based on Conjugated Polymer /Fullerene Blends. // Organic Electronics. 2006, v.7, issue 4, p.188-194.
42. Grenishin S.G. Electrophotographic process. M.: Science. 1970, 374 p.
43. Chang, C.-H., Wang, K.-L., Jiang, J.-C., Liaw, D.-J., Lee, K.-R., Lai, J.-Y., Lai, K.-H. // Polymer 2010, 51, 4493-4502.
44. Rumyantsev B.M., Berendyaev V.I., Vasilenko N.A., Malenko S.V., Kotov B.V. Photogeneration of Charge Carriers in Layers of Soluble Photoconducting Polyimides and Their Sensitization by Dyes. // Polymer Science, Ser. A, 1997, v.39, №4, p.506-512.
45. Rumyantsev B.M., Berendyaev V.I., Kotov B.V. Photoconduction Kinetics and Nature of Intermediate Photogeneration Centers in Soluble Photoconductive Polyimides. // J. Phys. Chem. Photochemistry and Magnetochemistry (Russian). 1999, v.73, №3, p. 538-547. Icentific
46. Relaxation in Polymers. Edited by T. Kobayashi. World Scientific. Singapore, 1993, 329 p.
47. Semiconductors and Semimetals. V. 85. Quantum Efficiency in Complex Systems. Part II. From Molecular Aggregates to Organic Solar Cells. Edited by U. Wurfel, M. Thowart and E. Weber. Elsevier, 2011, 341 p. Chapter 9, p. 312.