Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique where a sample is submitted to an oscillating stress or strain as a function of oscillatory frequency and temperature. Through this non-destructive measurement, a comprehensive understanding of the dynamic mechanical properties of polymers may be obtained. In this context, two series of polymers having different tacticity-dependent stereochemical microstructures have been submitted to controlled dynamo-mechanical strength. One series consists of three different PVC samples prior to and after substitution reaction to various extents in solution and in melt state. And one series consists of three commercial PMMA samples. In this review, we provide a straight correlation between β-relaxation and the content of mmr tetrads termini of isotactic sequences of at least one heptad in length, especially with those mmr structures taking the GTTG -TT conformation. Basically it is demonstrated that β-relaxation both, temperature and intensity, decrease with the content of the aforementioned microstructures, giving further support to the implication of magnitudes such as free volume and of coupling degree of the local motions in the mechanisms of the physicochemical processes responsible of the PVC and PMMA mechanical behaviors.
PVC, PMMA, β-relaxation, chain conformation, local motion, nucleophilic substitution, molecular microstructure, поливинилхлорид, полиметилметакрилат, релаксационный β-переход, конформация цепей, нуклеофильное замещение, молекулярная микроструктура
1. Guarrotxena N, Elícegui A, del Val JJ and Millán J. J Polym Sci Polym Phys 2004, 42, 2337.
2. Guarrotxena N, Martínez G and Millán J. Polymer 2000, 41, 3331.
3. Guarrotxena N, Vella N, Toureille A and Millán J. Macromol Chem Phys 1997,198, 457.
4. Guarrotxena N, Contreras J, Toureille A and Millán J, Polymer 1999, 40, 2639.
5. Guarrotxena N, Millán J, Vella N and Toureille T, Polymer 1997, 38, 4253.
6. Guarrotxena N, Toureille A and Millán J, Mcromol Chem Phys 1998, 199, 81.
7. Guarrotxena N, Millán J, Sessler G and Hess G, Macromol Rapid Commun 2000, 21, 691.
8. Ferry J, Viscoelastic Properties of Polymers, John Wiley & Sons, New York, 1980.
9. Ward I, Mechanical Properties of Solid Polymers, John Wiley & Sons, Chichester, 1983.
10. Ward I and Hadley D, An Introduction to the Mechanical Properties of Solid Polymers, John Wiley & Sons, Chichester, 1993.
11. Jones D, Int. J. Pharm. 1999, 179, 167.
12. Guarrotxena N, Martínez G and Millán J, J Polym Sci Polym Chem 1996, 34, 2387.
13. Guarrotxena N, Martínez G and Millán J, Eur Polym J 1997, 33, 1473.
14. Tonelli AE, NMR spectroscopy and polymer microstructure: The conformational connection. AT and T Bell Laboratories, VCH Publishers Inc., New York, 1990.
15. Moritani T and Fujiwara Y, J Chem Phys 1973, 59, 1175.
16. Guarrotxena N, Schue F, Collet A and Millan J, Polym Int 2003, 52, 429.
17. Wada Y, Tsuge K, Arisawa K, Ohsawa Y, Shida K, Hotta Y, et al, J Polym Sci Part C 1996,15, 101.
18. Guarrotxena N, Martínez G and Millán J. Polymer 1997, 38, 1857.
19. Guarrotxena N, del Val JJ and Millán J. Polym Bull 2001, 47, 105.
20. 20. Guarrotxena N, Tiemblo P, Martínez G, Gómez-Elvira JM and Millán J, Eur Polym J 1998, 34, 833.
21. Guarrotxena N, de Frutos M and Retes J. Macromol Rapid Commun 2004, 25, 1968.
22. Guarrotxena N, Vella N, Toureille A and Millán J. Polymer 1998, 39, 3273.
23. Guarrotxena N, Contreras J, Toureille A and Martínez G. Polymer 1999, 40, 2639.
24. Guarrotxena N, Contreras J, Martínez G and Millán J. Polym Bull 1998, 41, 355.
25. Guarrotxena N, Vella N, Toureille A and Millán J.Macromol Chem Phys 1996,197, 1301.