Hyaluronan (HA) is a high-molecular weight, naturally occurring linear polysaccharide and found in all tissues and body fluids of higher animals. The excellent properties of HA such as biodegradability, biocompatibility, safety, excellent mucoadhesive capacity and high water retaining ability make it well-qualified for using in various bio-medical applications. In addition; HA is non-toxic, non-inflammatory and non-immunogenic. Because of all these advantages, HA has received much attention as a matrix for drug delivery system. This review will summarize our present knowledge about HA, properties and its development in some pharmaceutical applications.
Hyaluronan, Drug delivery system, Hydrogel, Antioxidant, гиалуронан, гидрогель, антиоксидант, система переноса лекарств
1. Baker M, Feigan J, Lowther D. (1988). Chondrocyte antioxidant defences: the roles of catalase and glutathione peroxidase in protection against H202 dependant inhibition of PG biosynthesis. J Rheumatol, 15:670-677.
2. Balazs E, Denlinger J. (1993). Viscosupplementation: a new concept in the treatment of osteoarthritis. Journal of rheumatology Supplement, 20:3-9.
3. Balazs EA, Laurent TC, Jeanloz RW. (1986). Nomencla ture of hyaluronic acid. Biochemical Journal 235: 903.
4. Baňasová M, Valachová K, Hrabárová E, Priesolová E, Nagy M, Juránek I, Šoltés L. (2011). Early stage of the acute phase of joint infl ammation. In vitro testing of bucillamine and its oxidized metabolite SA981 in the function of antioxidants. 16th Interdisciplinary Czech-Slovak Toxicological Conference in Prague. Interdiscip Toxicol 4(2): 22.
5. Baňasová M, Valachová K, Rychly J, Priesolová E, Nagy M, Juránek I, Šoltés L. (2011a). Scavenging and chain breaking activity of bucillamine on free-radical mediated degradation of high molar mass hyaluronan. ChemZi, 7: 205- 206.
6. BeMiller JN, Whistler RL. (1962). Alkaline degradation of amino sugars. J Org Chem, 7:1161-4.
7. Bertrand P, Girard N, Delpech B, Duval C, d’Anjou J, Dauce J.(1992). Hyaluronan (hyaluronic acid) and hyaluronectin in the extracellular matrix of human breast carcinomas: comparison between invasive and noninvasive areas. Int J Cancer, 52(1):1-6.
8. Bothner H, Wik O. (1987). Rheology of hyaluronate. Acta Otolaryngol Suppl, 442: 25-30.
9. Bottner H, Waaler T, Wik O. (1988). Limiting viscosity number and weight average molecular weight of hyaluronate samples produced by heat degradation. Int J Biol Macromol, 10:287-91.
10. Bourguignon L, Zhu H, Shao L, Chen Y. (2000). CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. Journal of Biological Chemistry, 275 (3): 1829-38.
11. Brown M, Jones S. (2005). Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin. Journal of the European Academy of Dermatology and Venereology, 19:308-318.
12. Brown MB, Jones SA. (2005). Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin. JEADV, 19: 308-318.
13. Camber O, Edman P, Gurny R. (1987). Influence of sodium hyaluronate on the meiotic effect of pilocarpine in rabbits. Current eye research, 6: 779-784.
14. Casalini P, Carcangiu ML, Tammi R, Auvinen P, Kosma VM, Valagussa P.(2008). Two distinct local relapse subtypes in invasive breast cancer: effect on their prognostic impact. Clin Cancer Res, 14(1):25-31.
15. Luo C, Zhao J, Tu M, Zeng R, Rong J. (2013). Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network, Materials Science and Engineering C, 36: 301-308
16. Cortivo R, Brun P, Cardarelli L, O'Regan M, Radice M, Abatangelo G.(1996). Antioxidant Effects of Hyaluronan and Its a-Methyl-Prednisolone Derivative in Chondrocyte and Cartilage Cultures. Seminars in Arthritis and Rheumatism, 26 (1): 492-501.
17. Cuixia Yang, Yiwen Liu, Yiqing He, Yan Du, Wenjuan Wang , Xiaoxing Shi , Feng Gao. (2013). The use of HA oligosaccharide-loaded nanoparticles to breach the endogenous hyaluronan glycocalyx for breast cancer therapy, Biomaterials, 34 : 6829-6838
18. Naor D, Wallach-Dayan SB, Zahalka MA, Sionov RV. (2008). Involvement of CD44, a molecule with a thousand faces, in cancer dissemination, Semin. Cancer Biol, 18: 260-267.
19. Dalit Landesman-Milo, Meir Goldsmith, Shani Leviatan Ben-Arye, Bruria Witenberg, Emily Brown, Sigalit Leibovitch, Shalhevet Azriel , Sarit Tabak, Vered Morad, Dan Peer. (2013). Hyaluronan grafted lipid-based nanoparticles as RNAi carriers for cancer cells, Cancer Letters, 334 :221-227
20. Davies A, Gormally J, Wyn-Jones E. (1982). A study of hydration of sodium hyaluronate from compressibility and high precision densitometric measurements. Int J Biol Macromol, 4:436.
21. Dollo G, MalinovskyJ, Peron A, ChevanneF, Pinaud M, Verge R, Corre P. (2004). Prolongation of epidural bupivacaine effects with hyaluronic acid in rabbits. International Journal of Pharmaceutics, 272:109-119.
22. Dráfi F, Valachová K, Hrabárová E, Juránek I, Bauerová K, Šoltés L. (2010). Study of methotrexate and β-alanyl-L-histidine in comparison with L-glutathione on high-molar-mass hyaluronan degradation induced by ascorbate plus Cu (II) ions via rotational viscometry. 60th Pharmacological Days in Hradec Králové. Acta Medica, 53(3): 170.
23. Drobnik J. (1991). Hyaluronan in drug delivery. Adv Drug Dev Rev, 7: 295-308.
24. Elbert D, Pratt A, Lutolf M, Halstenberg S, HubbellJ. (2001). Protein delivery from materials formed by self-selective conjugate addition reactions. Journal of Controlled Release, 76: 11- 25.
25. Esposito E, Menegatti E, Cortesi R. (2005). Hyaluronan-based microspheres as tools for drug delivery: a comparative study. International Journal of Pharmaceutics, 288: 35-49.
26. Fakhari A. (2011). Biomedical Application of Hyaluronic Acid Nanoparticles. PhD. Faculty of the University of Kansas Falcone S, Palmeri D. (2006). Berg R, editors. Biomedical
27. applications of hyaluronic acid, ACS Publications. Garg G, Hales A. (2004). Chemistry and biology of hyaluronan. Elsevier Science.
28. Gibbs DA, Merrill EW, Smith KA, Balazs EA.(1968). Rheology of hyaluronic acid. Biopolymers, 6: 777-91.
29. Gribbon P, Heng BC, Hardingham TE. (2000).The analysis of intermolecular interactions in concentrated hyaluronan solutions suggests no evidence for chain-chain association. Biochem J, 350: 329-335.
30. Gurny R, Ibrahim H, Aebi A, Buri P, Wilson CG, Washington N, Edman P, Camber O. (1987). Design and evaluation of controlled release systems for the eye, J. Controlled Release, 6: 367 373
31. Hirakura T, Yasugi K, Nemoto T, Sato M, Shimoboji T, Aso Y, Morimoto N, Akiyoshi K. (2009). Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: New system for sustained delivery of protein with a chaperone-like function. Journal of Controlled Release.
32. Horvát S, Fehér A, Wolburg H, Sipos P, Veszelka S, Tóth A, Kis L, Kurunczi A, Balogh G, Kürti L, Eros I, Szabó-Révész P, Deli M. (2009). Sodium hyaluronate as a mucoadhesive component in nasal formulation enhances delivery of molecules to brain tissue. European Journal of Pharmaceutics and Biopharmaceutics, 72: 252-259.
33. Hrabárová E, Gemeiner P, Šoltés L. (2007). Peroxynitrite: In vivo and in vitro synthesis and oxidant degradative action on biological systems regarding biomolecular injury and infl ammatory processes. Chem Pap, 61: 417-437.
34. Hrabárová E, Valachová K, Juránek I, Šoltés L.(2012). Free-radical degradation of high-molar-mass hyaluronan induced by ascorbate plus cupric ions: evaluation of antioxidative eff ect of cysteine-derived compounds. Chemistry & Biodiversity, 9: 309-317.
35. Hrabárová E, Valachová K, Rapta P, Šoltés L. (2010). An alternative standard for trolox-equivalent antioxidant-capacity estimation based on thiol antioxidants. Comparative 2,2’-azinobis[3-ethylbenzothiazoline-6-sulfonic acid] decolorization and rotational viscometry study regarding hyaluronan degradation. Chemistry & Biodiversity, 7(9): 2191-2200.
36. Hrabárová E, Valachová K, Rychly J, Rapta P, Sasinková V, Maliková M, Šoltés L. (2009). High-molar-mass hyaluronan degradation by Weissberger’s system: Pro- and anti-oxidative effects of some thiol compounds. Polymer Degradation and Stability, 94: 1867-1875.
37. Hrabárová E, Valachova K, Juránek I, Soltés L. (2012). Free-radical degradation of high-molar-mass hyaluronan induced by ascorbate plus cupric ions: evaluation of antioxidative effect of cysteine-derived compounds. Chemistry & Biodiversity, 9: 309-317.
38. Illum L, Farraj NF, Critchley H, Davis SS. (1988). Nasal administration of gentamicin using a novel microsphere delivery system. Int. J. Pharm., 46: 261-265. Illum L. (2000).Transport of drugs from the nasal cavity to the central nervous system, Eur. J. Pharm. Sci,11: 1-18.
39. Ito T, Iidatanaka N, Niidome T, Kawano T, Kubo K, Yoshikawa K, Sato T, Yang Z, Koyama Y. (2006). Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: Protection from non-specific interactions, adhesion to targeted cells, and transcriptional activation. Journal of Controlled Release ,112: 382-388.
40. Calles JA, Tártara LI, Lopez-García A, Diebold Y, Palma SD, Vallés EM. (2013). Novel bioadhesive hyaluronan-itaconic acid crosslinked films forocular therapy, International Journal of Pharmaceutics, 455: 48- 56
41. Jeong B, Bae Y, Kim S. (2000). Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. Journal of Controlled Release, 63:155-163.
42. Jiang D, Liang J, Noble P. (2011). Hyaluronan as an Immune Regulator in Human Diseases. Physiol Rev, 91: 221-264.
43. Jin Y, Ubonvan T, Kim D. (2010). Hyaluronic Acid in Drug Delivery Systems. Journal of Pharmaceutical Investigation, 40: 33-43.
44. Kalal J, Drobnik J. Rypacek F. (1982). Affinity chromatography and affinity therapy. In:T.C.J. Gribnau, J. Visser and R.J.F. Nivard (Eds.), Affinity Chromatography and Related Techniques, Elsevier, Amsterdam.
45. Kim A, Checkla DM, Chen W. (2003). Characterization of DNA hyaluronan matrix for sustained gene transfer. J Control Release, 90:81-95.
46. Kobayashi Y, Okamoto A, Nishinari K. (1994) Viscoelasticity of hyaluronic-acid with different molecular-weights. Biorheology, 31: 235-244.
47. Kogan G, Soltés L, Stern R, Gemeiner P. (2007a). Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett, 29: 17-25.
48. Kogan G, Soltés L, Stern R, Mendichi R. (2007). Hyaluronic acid: A biopolymer with versatile physico-chemical and biological properties. Chapter - in: Handbook of Polymer Research: Monomers, Oligomers, Polymers and Composites. Pethrick R. A, Ballada A, Zaikov G. E. (eds.), Nova Science Publishers, New York, pp. 393-439.
49. Kogan G. (2010). Hyaluronan - A High Molar mass messenger reporting on the status of synovial joints: part 1. Physiological status In: New Steps in Chemical and Biochemical Physics. ISBN: 97 8-1-61668-923 -0. pp. 121-133.
50. Kongtawelert P, Ghosh P. (1989): An enzyme-linked immunosorbent-inhibition assay for quantitation of hyaluronan (hyaluronic acid) in biological fluids. Anal. Biochem, 178: 367-372.
51. Kreil G. (1995). Hyaluronidases-a group of neglected enzymes. Protein Sci 4:1666-9.
52. Kurisawa M, Chung J, Yang Y, Gao S, Uyama H. (2005). Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chemical communications. (34): 4312-4.
53. Langer R. (2003). Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res, 33:94-101.
54. Lapcík L, De-Smedt S, Demeester J, Chabrecek P, Lapcík LJr. (1998). Hyaluronan: Preparation, structure, properties, and applications. Chem Rev, 98:2663-84.
55. Laurent TC, Fraser JRE. (1992). Hyaluronan. FASEB J, 6: 2397-2404.
56. Laurent TC, Ryan M, Pictruszkiewicz A. (1960). Fractionation of hyaluronic acid. The polydispersity of hyaluronic acid from the vitreous body. Biochim Biophys Acta, 42: 476-85.
57. Le Bourlais C, Acar L, Zia H, Sado P, Needham T, Leverge R. (1998). Ophthalmic drug delivery systems--recent advances. Progress in retinal and eye research, 17: 33-58.
58. Lim S, Martin G, Berry D, Brown M. (2000). Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. Journal of Controlled Release, 66: 281-292.
59. Lim T, Forbes B, Berry J, Martin G, Brown M. (2002). In vivo evaluation of novel hyaluronan/Chitosan microparticulate delivery systems for the nasal delivery of gentamicin in rabbits. International Journal of Pharmaceutics, 231: 73-82.
60. Luo C, Zhao J, Tua M, Zenga R, Rong J. (2014). Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network. Materials Science and Engineering C, 36: 301-308
61. Maeda H, Seymour L, Miyamoto Y. (1992). Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Bioconjugate chemistry, 3: 351-362.
62. Marjorie J. (2011). A review of hyaluronan and its ophthalmic applications, Optometry, 82: 38-43.
63. Marshall K. (2000). Intra-articular hyaluronan therapy. Current opinion in rheumatology, 12: 468-474.
64. Meyer K, Palmer JW. (1934).The polysaccharide of the vitreous humor. Journal of Biology and Chemistry, 107: 629-634.
65. Milas M, Rinaudo M. (2005). Characterization and properties of hyaluronic acid (hyaluronan). In: Dumitriu S, ed. Polysaccharides Structural Diversity and Functional Versatility. New York, NY: Marcel Dekker 535-49.
66. Morimoto K, Morisaka K, Kamada A. (1985). Enhancement of nasal absorption of insulin and calcitonin using polyacrylic acid gel. J. Pharm. Pharmacol., 134-136.
67. Morris ER, Rees DA, Welsh EJ. (1980). Conformation and dynamic interactions in hyaluronate solutions. J Mol Biol, 138: 383-400.
68. Nancy E, Larsen, Endre A. Balazs.(1991). Drug delivery systems using hyaluronan and its derivatives, Advanced Drug Delivery Reviews, 7:279-293
69. Necas J, Bartosikova L, Brauner P, Kolar J. (2008). Hyaluronic acid (hyaluronan): a review, Veterinarni Medicina, 53(8):397-411.
70. Papakonstantinou E, Roth M, Karakiulakis G. (2012). Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinology, 4:3, 1-6.
71. Pethrick P, Petkov A, Zlatarov GE, Zaikov S K, Rakovsk. Nova Science Publishers, N.Y, Chapter 7, pp. 113-126.
72. Price R, Berry M, Navsaria H. (2007). Hyaluronic acid: the scientific and clinical evidence. Journal of Plastic, Reconstructive & Aesthetic Surgery, 60: 1110-1119.
73. Prisell P, Camber O, Hiselius J, Norstedt G. (1992). Evaluation of hyaluronan as a vehicle for peptide growth factors. International Journal of Pharmaceutics, 85: 51-56.
74. Pustorino R, Nicosia R, Sessa R. (1996). Effect of bovine serum, Hyaluronic acid and netilmicine on the in vitro adhesion of bacteria isolated from human-worn disposable soft contact lenses. Ann Ig,8:469-75.
75. Rapta P, Valachová K, Zalibera M, Šnirc V, Šoltés L. (2010). Hyaluronan degradation by reactive oxygen species: scavenging eggect of the hexapyridoindole stobadine and two of its derivatives. In Monomers, Oligomers, Polymers, Composites, and Nanocomposites, Ed: R. A.
76. Rapta P, Valachova´ K, Gemeiner P, Šoltés L. (2009). High-molar-mass hyaluronan behavior during testing its radical scavenging capacity in organic and aqueous media: Eff ects of the presence of Manganese (II) ions. Chem Biodivers, 6: 162-169.
77. Reháková M, Bakoš D, Soldán M,Vizárová K. (1994).Depolymerization reactions of hyaluronic acid in solution. Int J Biol Macromol, 16:121-4.
78. Robert L, Robert AM, Renard G. (2010). Biological effects of hyaluro-nan in connective tissues, eye, skin, venous wall. Role Aging Pathol.Biol. (3): 187-198,
79. Rydell N, Balazs E. (1971). Effect of intra-articular injection of hyaluronic acid on the clinical symptoms of osteoarthritis and on granulation tissue formation. Clinical Orthopaedics and Related Research, 80: 25-32.
80. Šoltés L, Brezová V, Stankovská M, Kogan G, Gemeiner P.(2006a) Degradation of high molecular-weight hyaluronan by hydrogen peroxide in the presence of cupric ions. Carbohydr Res, 341:639-44.
81. Šoltés L, Lath D, Mendichi R, Bystrický P.(2001). Radical degradation of high molecular weight hyaluronan: Inhibition of the reaction by ibuprofen enantiomers. Meth Find Exp Clin Pharmacol, 23:65-71.
82. Šoltés L, Mendichi R, Kogan G, Schiller J, Stankovska M, Arnhold J. (2006). Degradative action of reactive oxygen species on hyaluronan, Biomacromolecules, 7(3):659-68.
83. Šoltés L, Mislovičová D, Sebille B. (1996) Insight into the distribution of molecular weights and higher-order structure of hyaluronans and some β-(1→3)-glucans by size exclusion chromatography. Biomed Chromatogr, 10:53-9.
84. Šoltés L, Stankovská M, Brezová V, Schiller J, Arnhold J, Kogan G, Gemeiner P.(2006b). Hyaluronan degradation by copper (II) chloride and ascorbate: rotational viscometric, EPR spin-trapping, and MALDI-TOF mass spectrometric investigation. Carbohydr Res, 341:2826-34.
85. Šoltés L, Stankovská M, Kogan G, Gemeiner P, Stern R. (2005). Contribution of oxidative-reductive reactions to high-molecular-weight hyaluronan catabolism. Chem Biodivers, 2:1242-5.
86. Šoltés L, Valachova´ K, Mendichi R, Kogan G, Arnhold J, Gemeiner P. (2007). Solution properties of high-molar-mass hyaluronans: the biopolymer degradation by ascorbate. Carbohydr Res, 342: 1071-1077.
87. Stankovská M, Šoltés L, Vikartovská A, Mendichi r, Lath D, Molnarová M, Gemeiner P. (2004). Study of hyaluronan degradation by means of rotational Viscometry: Contribution of the material of viscometer. Chem Pap, 58: 348-352.
88. Stern R, Kogan G, Jedrzejas MJ, ˇSoltés L. (2007). The many ways to cleave hyaluronan. Biotechnology advances, 25 (6):537-57.
89. Stern R, Maibach HI. (2008). Hyaluronan in skin: aspects of aging and its pharmacologic modulation. Clin Dermatol, 26:106-22.
90. Stuart C, Linn G. (1985). Dilute sodium hyaluronate (Healon) in the treatment of ocular surface disorders. Ann Ophthalmol, 17:190-2.
91. Stuart JC, Linn JG.( 1985). Dilute sodium hyaluronate (Healon) in the treatment of ocular surface disorders. Ann Ophthalmol, 17:190-2.
92. Surovciková L, Valachová K, Baňasová M, Snirc V, Priesolová E, Nagy M, Juránek I, Šoltés L. (2012). Free-radical degradation of high-molar-mass hyaluronan induced by ascorbate plus cupric ions: Testing of stobadine and its two derivatives in function as antioxidants. General Physiol Biophys, 31: 57-64.
93. Takei Y, Maruyama A, Ferdous A, Nishimura Y, Kawano S, Ikejima K, Okumura S, Asayama S, Nogawa M, Hashimoto M. (2004). Targeted gene delivery to sinusoidal endothelial cells: DNA nanoassociate bearing hyaluronanglycocalyx. The FASAB Journal, 18: 699-701 Tamer TM. (2013). Hyaluronan and synovial joint function, distribution and healing. Interdiscip Toxicol Vol. 6(3): 101-115.
94. Tammi R, Ripellino J, Margolis R, Tammi M. (1988). Localizationof epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe. Journal of Investigative Dermatology, 90: 412-414.
95. Topolska D, Valachova K, Hrabárová E, Rapta P, Banasova M, Juránek I, Soltés L. (2014). Determination of protective properties of Bardejovske Kupele spa curative waters by rotational viscometry and ABTS assay. Balneo Research Journal, 5 (1): 3-15.
96. Turker S, Onur E, Ozer Y. (2004). Nasal route and drug delivery systems. Pharmacy World & Science, 26: 137-142.
97. Ugwoke M, Agu R, Verbeke N, Kinget R. (2005). Nasal mucoadhesive drug delivery: Background, applications, trends and future perspectives. Advanced drug delivery reviews, 57: 1640-1665.
98. Valachova K, Banasova M, Machova L, Juranek I, Bezek S, Soltes L. (2013a). Antioxidant activity of various hexahydropyridoindoles. Journal of Information Intelligence and Knowledge, 5: 15-32.
99. Valachová K, Hrabárová E, Dráfi F, Juránek I, Bauerová K, Priesolová E, Nagy M, Šoltés L. (2010). Ascorbate and Cu(II) induced oxidative degradation of high-molar-mass hyaluronan. Pro- and antioxidative eff ects of some thiols. Neuroendocrinol Lett, 31(2): 101-104.
100. Valachová K, Hrabárová E, Gemeiner P, Šoltés L. (2008). Study of pro- and anti-oxidative properties of d-penicillamine in a system comprising highmolar-mass hyaluronan, ascorbate, and cupric ions. Neuroendocrinol Lett, 29 (5): 697-701.
101. Valachová K, Hrabárová E, Juránek I, Šoltés L. (2011b). Radical degradation of high-molar-mass hyaluronan induced by Weissberger oxidative system. Testing of thiol compounds in the function of antioxidants. 16th Interdisciplinary Slovak-Czech Toxicological Conference in Prague. Interdiscip Toxicol, 4(2): 65.
102. Valachová K, Hrabárová E, Priesolová E, Nagy M, Baňasová M, Juránek I, Šoltés L. (2011). Free-radical degradation of high-molecular-weight hyaluronan induced by ascorbate plus cupric ions. Testing of bucillamine and its SA981-metabolite as antioxidants. J Pharma & Biomedical Analysis, 56: 664-670.
103. Valachová K, Kogan G, Gemeiner P, Šoltés L. (2008a). Hyaluronan degradation by ascorbate: Protective effects of manganese (II). Cellulose Chem. Technol, 42(9-10): 473-483.
104. Valachová K, Kogan G, Gemeiner P, Šoltés L. (2009a). Hyaluronan degradation by ascorbate: protective effects of manganese (II) chloride. In: Progress in Chemistry and Biochemistry. Kinetics, Thermodynamics, Synthesis, Properties and Application, Nova Science Publishers, N.Y, Chapter 20, pp. 201-215.
105. Valachová K, Mendichi R, Šoltés L. (2010b). Effect of L-glutathione on high-molar-mass hyaluronan degradation by oxidative system Cu(II) plus ascorbate. In: Monomers, Oligomers, Polymers, Composites, and Nanocomposites, Ed: R. A. Pethrick P. Petkov, A. Zlatarov G. E. Zaikov, S. K. Rakovsky, Nova Science Publishers, N.Y, Chapter 6, pp. 101-111.
106. Valachová K, Rapta P, Kogan G, Hrabárová E, Gemeiner P, Šoltés L. (2009). Degradation of high-molar-mass hyaluronan by ascorbate plus cupric ions: eff ects of D-penicillamine addition. Chem Biodivers 6: 389-395.
107. Valachová K, Rapta P, Slováková M, Priesolová E, Nagy M, Mislovičová D, Dráfi F, Bauerová K, Šoltés L. (2013). Radical degradation of high-molar-mass hyaluronan induced by ascorbate plus cupric ions. Testing of arbutin in the function of antioxidant. In: Advances in Kinetics and Mechanism of Chemical Reactions, G. E. Zaikov, A. J. M. Valente, A. L. Iordanskii (eds), Apple Academic Press, Waretown, NJ, USA, pp. 1-19.
108. Valachová K, Šoltés L. (2010a). Effects of biogenic transition metal ions Zn(II) and Mn(II) on hyaluronan degradation by action of ascorbate plus Cu(II) ions. In: New Steps in Chemical and Biochemical Physics. Pure and Applied Science, Nova Science Publishers, Ed: E. M. Pearce, G. Kirshenbaum, G.E. Zaikov, Nova Science Publishers, N.Y, Chapter 10, pp. 153-160
109. Valachová K, Vargová A, Rapta P, Hrabárová E, Drafi F, Bauerová K, Juránek I, Šoltés L. (2011a). Aurothiomalate as preventive and chain-breaking antioxidant in radical degradation of high-molar-mass hyaluronan. Chemistry & Biodiversity 8: 1274-1283.
110. Van Beek M, Jones L, Sheardown H. (2008) Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials, 29:780-9.
111. Volpi N, Schiller J, Stern R, Soltés L. (2009). Role, metabolism, chemical modifications and applications of hyaluronan. Current medicinal chemistry, 16(14):1718-45.
112. Yang H. Yuna, Douglas J. Goetzb, Paige Yellena, Weiliam Chen, (2004) Hyaluronan microspheres for sustained gene delivery and site-specific targeting, Biomaterials, 25: 147-157
113. Yumei Xie, Kristin L Aillon, Shuang Cai, Jason M. Christian, Neal M. Davies, Cory J. Berkland, M. Laird Forrest. (2010). Pulmonary delivery of cisplatin-hyaluronan conjugates via endotracheal instillation for the treatment of lung cancer, International Journal of Pharmaceutics, 392 :156-163
114. Yun YH, Goetz DJ, Yellen P, Chen W. (2004). Hyaluronan microspheres for sustained gene delivery and site-specific targetting. Biomaterials, 25: 147-157.