Abstract and keywords
Abstract (English):
Active packaging is becoming an emerging food technology to improve quality and safety of food products. One of the most common approaches is based on the release of antioxidant/antimicrobial compounds from the packaging material. In this work an antifungal active packaging system based on the release of carvacrol and thymol was optimized to increase the post-harvest shelf life of fresh strawberries and bread during storage. Thermal properties of the developed packaging material were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Volatile compounds in food samples contained in active packaging systems were monitored by using headspace solid phase microextraction followed by gas chromatography analysis (HS-SPME-GC-MS) at controlled conditions. The obtained results provided evidences that exposure to carvacrol and thymol is an effective way to enlarge the quality of strawberries and bread samples during distribution and sale.

Keywords:
active packaging, carvacrol, thymol, strawberries, bread, thermal properties, volatile profile, активная упаковка, карвакрол, тимол, клубника, хлеб, термические свойства, летучий профиль
References

1. Dong Sun Lee, K.L.Y., Luciano Piergiovanni., (2008). Food packaging science and technology. Boca Raton : CRC Press, c2008

2. Cutter, C.N., (2002). Microbial control by packaging: A review. Critical Reviews in Food Science and Nutrition, 42(2), 151-161.

3. Coma, V., (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78(1-2), 90-103.

4. Conte, A., Buonocore, G.G., Bevilacqua, A., Sinigaglia, M. & Del Nobile, M.A., (2006). Immobilization of Lysozyme on Polyvinylalcohol Films for Active Packaging Applications. Journal of Food Protection, 69(4), 866-870.

5. Gemili, S., Yemenicioǧlu, A. & Altinkaya, S.A., (2009). Development of cellulose acetate based antimicrobial food packaging materials for controlled release of lysozyme. Journal of Food Engineering, 90(4), 453-462.

6. Mastromatteo, M., Mastromatteo, M., Conte, A. & Del Nobile, M.A., (2010b). Advances in controlled release devices for food packaging applications. Trends in Food Science & Technology, 21(12), 591-598.

7. Kuorwel, K.K., Cran, M.J., Sonneveld, K., Miltz, J. & Bigger, S.W., (2011b). Essential Oils and Their Principal Constituents as Antimicrobial Agents for Synthetic Packaging Films. Journal of Food Science, 76(9), R164-R177.

8. Kuorwel, K.K., Cran, M.J., Sonneveld, K., Miltz, J. & Bigger, S.W., (2013). Migration of antimicrobial agents from starch-based films into a food simulant. LWT - Food Science and Technology, 50(2), 432-438.

9. Davidson PM, Z.S., (2003). The use of natural antimicrobials. Food preservation techniques. Boca Raton, Fla.: Woodhead Publishing Limited and CRC Press.

10. Dorman, H.J.D. & Deans, S.G., (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308-316.

11. Bakkali, F., Averbeck, S., Averbeck, D. & Idaomar, M., (2008). Biological effects of essential oils - A review. Food and Chemical Toxicology, 46(2), 446-475.

12. López, P., Sánchez, C., Batlle, R. & Nerín, C., (2007b). Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. Journal of Agricultural and Food Chemistry, 55(11), 4348-4356.

13. Suppakul, P., Sonneveld, K., Bigger, S.W. & Miltz, J., (2011). Diffusion of linalool and methylchavicol from polyethylene-based antimicrobial packaging films. LWT - Food Science and Technology, 44(9), 1888-1893.

14. Gutiérrez, L., Escudero, A., Batlle, R.n. & Nerín, C., (2009). Effect of Mixed Antimicrobial Agents and Flavors in Active Packaging Films. Journal of Agricultural and Food Chemistry, 57(18), 8564-8571.

15. López, P., Sánchez, C., Batlle, R. & Nerín, C., (2007a). Development of flexible antimicrobial films using essential oils as active agents. Journal of Agricultural and Food Chemistry, 55(21), 8814-8824.

16. Kuorwel, K.K., Cran, M.J., Sonneveld, K., Miltz, J. & Bigger, S.W., (2011a). Antimicrobial Activity of Natural Agents against Saccharomyces cerevisiae. Packaging Technology and Science, 24(5), 299-307.

17. Rodriguez-Lafuente, A., Nerin, C. & Batlle, R., (2010). Active Paraffin-Based Paper Packaging for Extending the Shelf Life of Cherry Tomatoes. Journal of Agricultural and Food Chemistry, 58(11), 6780-6786.

18. Rodríguez, A., Batlle, R. & Nerín, C., (2007). The use of natural essential oils as antimicrobial solutions in paper packaging. Part II. Progress in Organic Coatings, 60(1), 33-38.

19. Kurek, M., Moundanga, S., Favier, C., Galić, K. & Debeaufort, F., (2013). Antimicrobial efficiency of carvacrol vapour related to mass partition coefficient when incorporated in chitosan based films aimed for active packaging. Food Control, 32(1), 168-175.

20. Gutiérrez, L., Sánchez, C., Batlle, R. & Nerín, C., (2009). New antimicrobial active package for bakery products. Trends in Food Science & Technology, 20(2), 92-99.

21. Chiralt, A., Martı́nez-Navarrete, N., Martı́nez-Monzó, J., Talens, P., Moraga, G., Ayala, A. & Fito, P., (2001). Changes in mechanical properties throughout osmotic processes: Cryoprotectant effect. Journal of Food Engineering, 49(2-3), 129-135.

22. Tovar, B.z., Garcı́a, H.S. & Mata, M., (2001). Physiology of pre-cut mango. I. ACC and ACC oxidase activity of slices subjected to osmotic dehydration. Food Research International, 34(2-3), 207-215.

23. Pozo-Bayón, M.A., Guichard, E. & Cayot, N., (2006). Flavor Control in Baked Cereal Products. Food Reviews International, 22(4), 335-379.

24. Rizzolo, A., Gerli, F., Prinzivalli, C., Buratti, S. & Torreggiani, D., (2007). Headspace volatile compounds during osmotic dehydration of strawberries (cv Camarosa): Influence of osmotic solution composition and processing time. LWT - Food Science and Technology, 40(3), 529-535.

25. Cayot, N., (2007). Sensory quality of traditional foods. Food Chemistry, 101(1), 154-162.

26. Ruiz, J.A., Quilez, J., Mestres, M. & Guasch, J., (2003). Solid-Phase Microextraction Method for Headspace Analysis of Volatile Compounds in Bread Crumb. Cereal Chemistry Journal, 80(3), 255-259.

27. Poinot, P., Grua-Priol, J., Arvisenet, G., Rannou, C., Semenou, M., Bail, A.L. & Prost, C., (2007). Optimisation of HS-SPME to study representativeness of partially baked bread odorant extracts. Food Research International, 40(9), 1170-1184.

28. Ho, C.W., Wan Aida, W.M., Maskat, M.Y. & Osman, H., (2006). Optimization of headspace solid phase microextraction (HS-SPME) for gas chromatography mass spectrometry (GC-MS) analysis of aroma compound in palm sugar (Arenga pinnata). Journal of Food Composition and Analysis, 19(8), 822-830.

29. Quílez, J., Ruiz, J.A. & Romero, M.P., (2006). Relationships Between Sensory Flavor Evaluation and Volatile and Nonvolatile Compounds in Commercial Wheat Bread Type Baguette. Journal of Food Science, 71(6), S423-S427.

30. Ramos, M., Jiménez, A., Peltzer, M. & Garrigós, M.C., (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering, 109(3), 513-519.

31. Joseph, P.V., Joseph, K., Thomas, S., Pillai, C.K.S., Prasad, V.S., Groeninckx, G. & Sarkissova, M., (2003). The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 34(3), 253-266.

32. G.E. Zaikov, A.L. Buchachenko, V.B. Ivanov “Polymer aging at the cutting adge”, New York, Nova Science Publ., 2002, 176 pp.

33. S.A. Semenov, K.Z. Gumargalieva, G.E. Zaikov “Biodegradation and durability of materials under the effect of microorganisms”, Utrecht, VSP International Science Publ., 2003, 199 pp.

34. Poinot, P., Arvisenet, G., Grua-Priol, J., Colas, D., Fillonneau, C., Le Bail, A. & Prost, C., (2008). Influence of formulation and process on the aromatic profile and physical characteristics of bread. Journal of Cereal Science, 48(3), 686-697.

35. Blanda, G., Cerretani, L., Cardinali, A., Barbieri, S., Bendini, A. & Lercker, G., (2009). Osmotic dehydrofreezing of strawberries: Polyphenolic content, volatile profile and consumer acceptance. LWT - Food Science and Technology, 42(1), 30-36.

36. Persico, P., Ambrogi, V., Carfagna, C., Cerruti, P., Ferrocino, I. & Mauriello, G., (2009). Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polymer Engineering & Science, 49(7), 1447-1455.

37. Dobkowski, Z., (2006). Thermal analysis techniques for characterization of polymer materials. Polymer Degradation and Stability, 91(3), 488-493.

38. Alin, J. & Hakkarainen, M., (2010). Type of polypropylene material significantly influences the migration of antioxidants from polymer packaging to food simulants during microwave heating. Journal of Applied Polymer Science, 118(2), 1084-1093.

39. Pomerantsev, A.L. & Rodionova, O.Y., (2005). Hard and soft methods for prediction of antioxidants' activity based on the DSC measurements. Chemometrics and Intelligent Laboratory Systems, 79(1-2), 73-83.

40. Yanishlieva, N.V., Marinova, E.M., Gordon, M.H. & Raneva, V.G., (1999). Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chemistry, 64(1), 59-66.

41. Riga, A., Collins, R. & Mlachak, G., (1998). Oxidative behavior of polymers by thermogravimetric analysis, differential thermal analysis and pressure differential scanning calorimetry. Thermochimica Acta, 324, 135-149.

42. Hazzit, M., Baaliouamer, A., Faleiro, M.L. & Miguel, M.G., (2006). Composition of the essential oils of Thymus and Origanum species from Algeria and their antioxidant and antimicrobial activities. Journal of Agricultural and Food Chemistry, 54(17), 6314-6321.

43. Mastromatteo, M., Conte, A. & Del Nobile, M., (2010a). Combined use of modified atmosphere packaging and natural compounds for food preservation. Food Engineering Reviews, 2(1), 28-38.

Login or Create
* Forgot password?