KRITERII VYBORA KVANTOVO-HIMICHESKOGO METODA ISSLEDOVANIYA MEHANIZMOV HIMICHESKIH REAKCIY. CHAST' 2. ANALIZ TOCHNOSTI RASCHETA ENTAL'PIY OBRAZOVANIYA SOEDINENIY I RADIKALOV, ENERGIY DISSOCIACIY SVYAZEY V MOLEKULAH
Abstract and keywords
Abstract (English):
The example of choice of quantum-chemical computation method was considered in this article. This method was used for the study of thermal destruction of nitrocompounds. The accuracy of transmission of formational enthalpies of chemical compounds and of bond dissociation energies is the choice criteria. Using the several methods: density functional ( B3LYP, O3LYP, B98, CAM-B3LYP, wB97XD, TPSS, TPSSh, VSXC ), theory of disturbances ( MP2, MP3, MP4SD, MP4SDQ, MP4SDTQ ), linked clusters ( QCISD, QCISD(T) ), composite ( G1, G2, G3, G3B3, G4, CBS-QB3 ) and Hartree-Fock the formational enthalpies of the simplest nitrocompounds were computed. The С -N bond dissociation energies in these compounds were estimated. The minimum errors in computation of formational enthalpies and D(C-N) were obtained using composite methods G3, G3B3 and G4 and using density functional methods B3LYP, TPSSh, wB97XD, B98 and CAM-B3LYP with various sets of basic functions. The non-empiric methods of linked clusters with the large sets of basic functions must be used for the verification of results obtained using density functional methods.

Keywords:
теоретическое исследование, квантово-химические методы расчета, способ учета электронной корреляции, набор базисных функций, механизм химических реакций, энтальпии образования химических соединений, энергии диссоциации связей, theoretical study, quantum-chemical computation methods, electronic correlation registration mode, set of basic functions, mechanism of chemical reactions, formation enthalpies of chemical compounds, bond dissociation energies
References

1. A.G. Shamov, G.M. Hrapkovskiy, G.A. Shamov, V sb. st. IV Vserossiyskoy konferencii «Struktura i dinamika molekulyarnyh sistem». Vyp. IV. T.3, Yoshkar-Ola-Kazan'-Moskva, 1998. S.183-187.

2. E.V. Nikolaeva, A.G. Shamov, G.M. Hrapkovskiy, H.E. Harlampidi, ZhOH, 72, 5, 802-813 (2002).

3. G.M. Hrapkovskiy, A.G. Shamov, E.V. Nikolaeva, D.V. Chachkov, Uspehi himii, 78, 10, 980-1021 (2009).

4. E.V. Nikolaeva. Dis. kand. him. nauk, Kazanskiy gos. tehnol. un-t, Kazan', 2002. 203 s.

5. E.V. Nikolaeva, Vestnik Kazanskogo tehnol. un-ta., № 9, 68-73 (2010).

6. D.V. Chachkov. Dis. kand. him. nauk, Kazanskiy gos. tehnol. un-t, Kazan', 2005. 206 s.

7. A.G. Shamov, E.V. Nikolaeva, D.V. Chachkov, G.M. Hrapkovskiy, Vestnik Kazanskogo tehnol. un-ta., №2, 36-43 (2003).

8. A.G. Shamov, E.V. Nikolaeva, G.M. Hrapkovskiy, Vestnik Kazanskogo tehnol. un-ta. № 24, 12-20 (2011).

9. G.M. Hrapkovskiy, E.V. Nikolaeva, D.V. Chachkov, A.G. Shamov, Zhurnal obschey himii, 74, 6, 983-996 (2004).

10. E.A. Masilov, E.V. Nikolaeva, A.G. Shamov, G.M. Khrapkovskii, Mendeleev's Communications, N17, 359-361 (2007).

11. A.G. Shamov, E.V. Nikolaeva, G.M. Hrapkovskiy, ZhPrH, 82, 10, 1587 - 1608 (2009).

12. J.W. Ochterski [http://gaussian.com].

13. A.D. Becke, Phys. Rev. A., 38, 3098-3100 (1988).

14. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B., 37, 785-789 (1988).

15. B.M. Rise, S.V. Pai, J. Hare, Combustion and Flame, 188, 445-458 (1999).

16. S.J. Mole, X. Zhou, R. Liu, J. Phys. Chem., 100, 14665-14671 (1996).

17. G.B. Manelis, G.M. Nazin, Yu.I. Rubcov, V.A. Strunin. Termicheskoe razlozhenie i gorenie vzryvchatyh veschestv i porohov, Nauka, Moskva, 1996. 223 s.

18. H.L. Schmider, A.D. Becke, J. Chem. Phys., 108, 9624-9631 (1998).

19. T. Yanai, D.P. Tew, N. C. Handy, Chem. Phys. Lett., 393, 51-57 (2004).

20. J.-D. Chai, M. Head-Gordon // Phys. Chem. Chem. Phys. - 2008. - Vol. 10. - P. 6615-6620.

21. A.J. Cohen, N.C. Handy, Mol. Phys., 99, 607-615 (2001).

22. T. Van Voorhis, G. E. Scuseria, J. Chem. Phys., 109, 400-410 (1998).

23. J.M. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett., 91, 146401-146404 (2003).

24. L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys., 123, 124107 (2005).

25. J. Gauss, D. Cremer, Chem. Phys. Lett., 150, 280-286 (1988).

26. J. Gauss, Chem. Phys. Lett., 163. 549-554 (1989).

27. G. E. Scuseria, H. F. Schaefer, J. Chem. Phys., 90, 3700-3703 (1989).

28. M. Head-Gordon, T. Head-Gordon, Them. Phys. Lett., 220, 122-128 (1994).

29. M.J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett., 166. 275-280 (1990).

30. J.A. Pople, J.S. Binkley, R. Seeger, Int. J. Quantum Chem., Suppl. Y-10, 1-19 (1976).

31. K. Raghavachari, J.A. Pople, Int. J. Quantum Chem., 14, 91-100 (1978).

32. G.W. Trucks, J.D. Watts, E.A. Salter, R.J. Bartlett, Chem. Phys. Lett., 153, 490-495 (1988).

33. L.A. Curtiss, C. Jones, G.W. Trucks, K. Raghavachari, J.A. Pople, J. Chem. Phys., 93, 2537-2545 (1990).

34. L.A. Curtiss, K. Raghavachari, G.W. Trucks, J.A. Pople, J. Chem. Phys., 94, 7221-7230 (1991).

35. L.A. Curtiss, K. Raghavachari, P.C. Redfern, V. Rassolov, J.A. Pople, J. Chem. Phys., 109, 7764-7776 (1998).

36. A.G. Baboul, L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys., 110, 7650-7657, (1999).

37. J.A. Montgomery Jr., M.J. Frisch, J.W. Ochterski, G.A. Petersson, J. Chem. Phys., 110, 2822-2827 (1999).

38. G.M. Hrapkovskiy, A.G. Shamov, XVII Mezhdunarodnoy konferencii po himicheskoy termodinamike v Rossii. RSST 2009. (Kazan', Rossiya, Iyun' 29 - Iyul' 3, 2009). Tez. dokl. Kazan', 2009.

39. C.C.J. Roothaan, Rev. Mod. Phys., 23, 69-89 (1951).

40. J.A. Pople, R.K. Nesbet, J. Chem. Phys., 22, 571-572 (1954).

41. R. McWeeny, G. Dierksen, J. Chem. Phys., 49, 4852-4856 (1968).

42. M.H. Karapet'yanc, M.L. Karapet'yanc. Osnovnye termodinamicheskie konstanty neorganicheskih i organicheskih veschestv. Himiya, Moskva, 1968. 470 s.

43. K.S. Krasnov, N.V. Filipenko, V.A. Bobkova, Molekulyarnye postoyannye neorganicheskih soedineniy. Himiya, Leningrad, 1979. 448 s.

44. T. Glenwinkel-Meyer, F.F. Crim, J. Mol. Struct. (Theochem), 337, 209-224 (1995).

45. NIST Standard Reference Database: [http://webbook.nist.gov/chemistry].

46. Yu.D. Orlov, Yu.A. Lebedev, I.Sh. Sayfullin, Termohimiya organicheskih svobodnyh radikalov. Nauka, Moskva, 2001. 304 s.

47. W. Tsang, J.A. Martinho Simoes, A. Greenberg, J.F. Liebman eds., Heats of Formation of Organic Free Radicals by Kinetic Methods in Energetics of Organic Free Radicals. Blackie Academic and Professional, London, 1996, P. 22-58.

48. Yu.A. Lebedev, E.A. Miroshnichenko, Yu.K. Knobel'. Termohimiya nitrosoedineniy. Nauka, Moskva, 1970. 165 s.

49. D. Habibollahzadeh, M.E. Grize, M.C. Concha, J.S. Murray, P. Politzer, J. Comp. Chem., 16, 5, 654-658 (1995).

50. J.P. McCullough, , D.W. Scott, R.E. Pennington, I.A. Hossenlopp, G. Waddington, J. Am. Chem. Soc., 76, 4791-4796 (1954).

51. G.M. Nazin, G.B. Manelis, Uspehi himii, 63, 4, 327-337, (1994).

52. L.V. Gurvich, G.V. Karachevcev, V.I. Kondrat'ev, Yu.A. Lebedev, V.A. Medvedev, V.A. Potapov, Yu.S. Hodeev, Energii razryva himicheskih svyazey, potencialy ionizacii i srodstvo k elektronu. Nauka, Moskva, 1974. 351 s.

53. D. Hegarty, M.A. Robb, Mol. Phys., 38, 1795-1812 (1979).

54. R.H.A. Eade, M.A. Robb, Chem. Phys. Lett., 83, 362-368 (1981).

55. M.J Frisch, I.N. Ragazos, M.A. Robb, H.B. Schlegel, Chem. Phys. Lett., 189, 524-528 (1992).

56. G.M. Hrapkovskiy, A.G. Shamov, G.A. Shamov, V.A. Shlyapochnikov, Izv. AN. Ser. him., № 6, 913-917 (2001).

57. G.M. Khrapkovskii, E.V. Nikolaeva, D.V. Chachkov, A.G. Shamov, IV Seminar "New trends in research of energetic materials" in Czech Republic (Pardubice, Czech Republic, April 11-12, 2001). Pardubice, 2001. P.17-22.

Login or Create
* Forgot password?